Сборник задач по математике с решениями для поступающих в вузы - [18]

Шрифт
Интервал

x < 1,   2 < x < 3,   4 < x < 5,   6 < x < 7,   8 < x < 9,   x > 10.

Приемы, позволяющие решать более сложные неравенства типа (1), станут понятны, если вы разберете примеры 2 и 3 и следующие за ними упражнения.

Пример 2. Решить неравенство (x + 3)(2x + 2)(x − 4)²(5 − x) > 0.

Перепишем неравенство в виде

(x + 3)(x + 1)(x − 4)²(x − 5) < 0,

где в каждой скобке стоит двучлен с коэффициентом 1 при x. Множитель (x − 4)² всегда неотрицателен и только в точке x = 4 обращается в нуль. Поэтому его влияние на решение неравенства

ограничивается тем, что он исключает точку x = 4 (рис. 10.5). Остается проследить чередование знаков в неравенстве

(x + 3)(x + 1)(x − 5) < 0.

Ответ. x < −3,  −1 < x < 4,   4 < x < 5.

Пример 3. Решить неравенство

(3)

Данное неравенство не удовлетворяется в тех точках, где множители, стоящие в знаменателе, обращаются в нуль (x = 4, x = 2). Поэтому исключим эти точки из дальнейшего рассмотрения, обозначив их на рис. 10.6 светлыми кружками.

В точках же, в которых обращается в нуль числитель (x = −3, x = −1, x = 5), неравенство превращается в равенство, т. е. эти точки должны войти в решение неравенства (3). Отметим их на рисунке черными кружками[8]).

Множители (x + 3)² и (x − 4)², не меняющие знака на всей числовой оси, можно опустить, так как их влияние уже учтено. Во всех остальных точках неравенство (3) равносильно такому:

(x + 1)(x − 5)(x − 2) < 0.

Ответ. x ≤ −1,  2 < x < 4,  4 < x ≤ 5.

Упражнения

Решите неравенства:

4. (5 − 2х)(3 − x)³(x − 4)² < 0.

5. 

Иррациональные неравенства. Решая уравнения, мы можем получать следствия данного уравнения и закончить решение проверкой, которая отсеивает посторонние корни. При решении же неравенств обычно получаются целые интервалы решений, что сильно усложняет проверку. Поэтому неравенства преобразовывают так, чтобы не нарушалась равносильность.

Начнем с иррациональных неравенств.

Пример 4. Решить неравенство

(4)

Нередко предлагают такое «решение»:

x² − 55х + 250 < (x − 14)²,

−55х + 250 < −28х + 196,

x > 2,

которое обосновывают следующим образом: «Левая часть меньше правой, но неотрицательна, так как мы имеем дело с арифметическим корнем. Следовательно, обе части данного неравенства неотрицательны, и его можно возвести в квадрат, не нарушая равносильности неравенства».

Чтобы убедиться, что неравенство решено неверно, подставим в данное неравенство, например, x = 10.

Проанализируем ход приведенных здесь рассуждений. Они доказывают, что если неравенство (4) удовлетворяется при некоторых x, то обе части его можно возвести в квадрат, и тогда x > 2. Однако отсюда не следует обратное, что исходное неравенство удовлетворяется при всех x > 2.

Присутствие в неравенстве (4) квадратного корня накладывало на неизвестное определенные ограничения, которые оказались разрушенными после возведения неравенства (4) в квадрат.

Трехчлен x² − 55х + 250 вначале стоял под знаком квадратного корня, а потому должен был быть неотрицательным. После возведения неравенства (4) в квадрат это ограничение исчезло; теперь ничто не мешает трехчлену стать отрицательным. Даже наоборот, в этом случае неравенство x² − 55х + 250 < (x − 14)² удовлетворяется наверняка, так как справа стоит величина, которая не может стать меньше нуля.

Чтобы подкоренное выражение оставалось неотрицательным, мы должны добавить к полученному после возведения в квадрат неравенству требование x² − 55x + 250 ≥ 0, т. е. x ≤ 5, x ≥ 50. Из полупрямой x > 2 оказались выделенными две ее части: 2 < x ≤ 5, x ≥ 50.

Но и теперь еще не все. Достаточно подставить в исходное неравенство значение x = 4, и мы убедимся, что оно не удовлетворяется. Дело в том, что при возведении в квадрат мы устранили еще одно ограничение, которое присутствовало в неравенстве (4). В левой части первоначального неравенства стоит квадратный корень, т. е. неотрицательное число. Чтобы это неравенство удовлетворялось, правая его часть x − 14 должна быть больше нуля. Итак, надо добавить ограничение x − 14 > 0, которое присутствовало в исходном неравенстве и оказалось разрушенным после возведения в квадрат.

Таким образом, после возведения данного неравенства в квадрат, мы должны позаботиться о сохранении всех ограничений, которые присутствуют в данном неравенстве. Неравенство (4) нужно было заменить системой

решая которую мы нашли бы, что

т. е. x ≥ 50.

Упражнения

В каждом из неравенств 6—9 освободитесь от иррациональности, не нарушая равносильности:

6.

7.

8.

9.

Показательные и логарифмические неравенства. При решении показательных и логарифмических неравенств пользуются следующими свойствами:

1. Неравенство f(x)>φ(x) > 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

1а. Неравенство f(x)>φ(x) < 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

2. Неравенство log>f(x)φ(x) > 0 равносильно совокупности двух систем неравенств:

или системе неравенств

2а. Неравенство  log>f(x)φ(x) < 0 равносильно совокупности двух систем неравенств:

или системе неравенств

Решения неравенств  f(x)>φ(x) < 1 и  f(x)>φ(x) > 1 в предположении, что допускаются отрицательные значения


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.