Сборник задач по математике с решениями для поступающих в вузы - [11]

Шрифт
Интервал

(докажите).

Если мы проведем в кубе линию центров оснований и построим отбрасываемую ею тень, то не составит труда вычертить тень, отбрасываемую всем верхним основанием, а затем и всем кубом (см. рис. 4.5).


4.1. Дан куб ABCDА>1В>1С>1D>1. Через вершину А, середину E ребра BC и центр O грани СС>1D>1D проходит секущая плоскость. Найдите отношение, в котором она делит объем куба.

4.2. Дан куб ABCDА>1В>1С>1D>1 с ребром, равным единице. Найдите площадь сечения куба плоскостью, проходящей через вершину А и середины F и G ребер В>1С>1 и С>1D>1.

4.3. В кубе ABCDА>1В>1С>1D>1 проведена плоскость через вершину А, центр O>1 верхнего основания А>1В>1С>1D>1 и центр Q боковой грани ВВ>1С>1С. Пусть E — точка пересечения секущей плоскости с ребром В>1С>1. Найдите отношение В>1E к ЕС>1.

4.4. Дана правильная четырехугольная пирамида SABCD. Сторона CD продолжена на расстояние MD = 2CD (MC = 3CD). Через точку M, вершину В и середину ребра SC проведена плоскость. Найдите отношение объемов частей пирамиды, полученных при пересечении ее этой плоскостью.

4.5. Дана правильная четырехугольная пирамида SABCD с вершиной S. Через точки А, D и середину ребра SC проведена плоскость. В каком отношении эта плоскость делит объем пирамиды?

4.6. Дан куб ABCDА>1В>1С>1D>1. На продолжении ребер AB, АА>1AD отложены соответственно отрезки ВР, А>1QDR длины 1,5АВ. Через точки P, QR проведена плоскость. В каком отношении эта плоскость делит объем куба?

4.7. Площадь боковой грани правильной шестиугольной пирамиды равна Q. Вычислите площадь сечения, проходящего через середину высоты пирамиды параллельно боковой грани.

4.8. В треугольной призме ABCА>1В>1С>1 боковое ребро равно l. В основании призмы лежит правильный треугольник со стороной b, а прямая, проходящая через вершину В>1 и центр основания ABC, перпендикулярна к основаниям. Найдите площадь сечения, проходящего через ребро AB и середину ребра СС>1.

4.9. В прямоугольном параллелепипеде ABCDА>1В>1С>1D>1 (ABCD и А>1В>1С>1D>1 — основания) даны длины ребер AB = а, АD = b, АА>1 = с. Пусть точка O — центр основания ABCD, O>1 — центр основания А>1В>1С>1D>1F — точка, делящая отрезок O>1O в отношении 1 : 3. Найдите площадь сечения данного параллелепипеда плоскостью, проходящей через точку F параллельно его диагонали АС>1 и диагонали ВD основания.

4.10. В точке E, находящейся на расстоянии 2h от плоскости основания куба с ребром h и на расстоянии R > 2h от прямой, соединяющей центры оснований куба, помещен источник света. Докажите, что тень, отбрасываемая кубом на плоскость основания, будет иметь наибольшую площадь, когда плоскость, проходящая через центр куба, точку E и одну из вершин, перпендикулярна к плоскости основания.

4.11. На плоскость Π под прямым углом к ней падает пучок параллельных лучей. Как расположить над плоскостью куб с ребром а, чтобы отбрасываемая им тень имела максимальную площадь? Найдите площадь максимальной тени.

Глава 5

Геометрические места

5.1. Найдите геометрическое место оснований перпендикуляров, опущенных из центра O круга на хорды, проходящие через данную точку N внутри круга.

5.2. На плоскости зафиксированы две различные точки А и В. Найдите геометрическое место точек M, для каждой из которых AM · ВМ · cos ∠ AMB = ¾АВ².

5.3. На плоскости зафиксированы две различные точки А и В. Докажите, что геометрическое место точек M, удовлетворяющих условию 2АМ² + МВ² = АВ², есть окружность с диаметром AC, где точка С лежит на отрезке AB, причем >AC/>BC= 2.

5.4. Дан треугольник ABC. Найдите геометрическое место точек M, таких, что площади треугольников АМВ и NМС равны.

5.5. На плоскости даны два отрезка: AB и CD. Найдите геометрическое место точек M плоскости, для которых площади треугольников ABM и CDM равны.

5.6. Дан куб с ребром а. Найдите геометрическое место середин отрезков длины l, один из концов которых лежит на диагонали верхнего основания, а другой — на непараллельной ей диагонали нижнего основания.

Глава 6

Свойства чисел. Делимость

6.1. Докажите, что р² − 1 делится на 24, если p — простое число, большее 3.

6.2. Докажите, что n³ + 2n при любом натуральном n делится на 3.

6.3. Докажите, что число 3>105 + 4>105 делится на 49 и 181.

6.4. Сколько в числе 500! содержится множителей 2?

6.5. Делится ли число

 на 81?

6.6. Определите, при каких целых значениях n выражение n>4 + 4 является простым числом.

6.7. Докажите, что

является целым числом при любом четном n.

6.8. При каких целых значениях x дробь

 сократима?

6.9. Найдите все пятизначные числа вида

 (x — цифра сотен, y — цифра единиц), которые делятся на 36.

6.10. Найдите трехзначное число

 (а, b, с — его цифры), если четырехзначное число
 в три раза больше четырехзначного числа
.

6.11. Найдите простое число p, если p + 2 и p + 4 — простые числа.

6.12. Докажите, что tg 5° — число иррациональное.

6.13. Найдите два последовательных натуральных числа, сумма цифр каждого из которых делится на 11.

6.14. Найдите все целочисленные решения уравнения

3x² − 16xy − 35y² + 17 = 0.

6.15. Сколько различных целочисленных пар (x, y) удовлетворяют уравнению

x² = 4y² + 20 025?

6.16. Найдите натуральные x и y, удовлетворяющие условию 113x − 69


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.