Математика. Утрата определенности. - [14]
Подлинной целью греков было исследование природы. Этой цели служило все — даже геометрические истины высоко ценились лишь постольку, поскольку они были полезны при изучении физического мира. Греки понимали, — что в структуре Вселенной воплощены геометрические принципы, первичным компонентом которых является пространство. Именно поэтому исследование пространства и пространственных фигур явилось существенным вкладом в изучение природы. Геометрия входила составной частью в более широкую программу космологических исследований. Например, изучение сферической геометрии было предпринято, когда астрономия приобрела математический характер, что произошло во времена Платона. Греческое слово «сфера» (шар) у пифагорейцев имело тот же смысл, что и (тогда еще не существовавшее) слово «астрономия». Сочинение Евклида «Феномены», посвященное сферической геометрии, предназначалось для использования в астрономии. Подобные факты и более полное знание того, как происходило развитие математики в последующие времена, позволяют утверждать, что и у греков к постановке математических проблем приводили естественнонаучные исследования и что математика была неотъемлемой частью изучения природы. Чтобы прийти к такому выводу, не нужно строить умозрительные заключения — достаточно выяснить, чего именно удалось достигнуть грекам в исследовании природы и кому принадлежат самые крупные достижения.
Величайший успех в области собственно физической науки выпал на долю астрономии. Платон, хорошо осведомленный о впечатляющем числе астрономических наблюдений, проведенных в Древнем Египте и Вавилоне, неоднократно подчеркивал, что египтяне и вавилоняне не располагали основополагающей, обобщающей теорией, которая позволила бы объяснить наблюдаемые нерегулярные движения планет. Положение дела попытался «исправить» некогда учившийся в Академии Евдокс, чья чисто геометрическая работа включена в V и XIII книги «Начал» Евклида. Полученное Евдоксом решение составило первую в истории науки в разумных пределах завершенную астрономическую теорию.
Мы не станем подробно описывать теорию Евдокса. Скажем лишь, что это была сугубо математическая теория, рассматривавшая движения взаимодействующих сфер. За исключением сферы неподвижных звезд, все сферы в теории Евдокса были не материальными телами, а математическими конструкциями. Евдокс даже не пытался установить, какие силы вынуждают сферы вращаться так, как они, по его утверждению, вращались. Теория Евдокса весьма современна нам по духу, ибо и в настоящее время целью науки зачастую считается математическое описание, а не физическое объяснение. Теория Евдокса была превзойдена теорией, создание которой принято приписывать трем величайшим астрономам-теоретикам: Аполлонию, Гиппарху и Птолемею. Эта теория вошла в «Альмагест» Птолемея.
Никакие труды Аполлония по астрономии до нашего времени не дошли. Однако различные греческие авторы, в том числе Птолемей (в XII книге «Альмагеста»), ссылаются на его результаты. Как астроном, Аполлоний пользовался такой известностью, что получил прозвище ε (эпсилон), поскольку он много занимался движением Луны, а Луну греческие астрономы обозначали буквой ε. До нас дошло лишь одно небольшое астрономическое сочинение Гиппарха, но в «Альмагесте» Птолемея мы находим ссылки на Гиппарха и восхваления в его адрес.
Основная схема того, что теперь принято называть птолемеевой системой мира, вошла в греческую астрономию в период между работами Евдокса и Аполлония. Согласно этой схеме, планета P движется с постоянной скоростью по окружности с центром S, в то время как центр S в свою очередь движется по окружности, центр которой совпадает с Землей E (рис. 1.5). Окружность, по которой движется точка S, называется деферентом, окружность, которую описывает планета P, — эпициклом. Точка S для некоторых планет совпадает с Солнцем, а в остальных случаях это просто математическая точка. Направления, в которых движутся точки P и S, могут как совпадать, так и быть противоположными. Например, в случае Солнца и Луны точки S и P движутся по окружностям в противоположные стороны.
Рис. 1.5. Эпицикл и деферент.
Для описания движений некоторых планет Птолемей несколько видоизменил описанную схему. Подходящим образом выбирая радиусы эпицикла и деферента, скорости движения тела по эпициклу и скорости движения эпицикла по деференту, Гиппарх и Птолемей смогли получить описания движений небесных тел, хорошо согласующиеся с результатами астрономических наблюдений того времени. Со времен Гиппарха лунное затмение можно было бы предсказать с точностью до одного-двух часов, хотя солнечные затмения удавалось предсказывать менее точно. Такие предсказания стали возможными, потому что Птолемей применил тригонометрию, разработанную им, по его собственному признанию, для астрономии.
Как и Евдокс, Птолемей отчетливо сознавал (и это необходимо особо отметить, имея в виду нашу главную тему — поиск истин), что его теория представляет собой не более чем удобное математическое описание, согласующееся с наблюдениями, и не обязательно должна отражать истинный механизм движения планет. При описании движений некоторых планет Птолемею приходилось рассматривать несколько альтернативных схем, и он отдавал предпочтение той, которая была проще с точки зрения математики. В XIII книге «Альмагеста» Птолемей утверждает, что астрономия должна стремиться к возможно более простой математической модели. Но христианский мир принял математическую модель Птолемея за абсолютную истину.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.