Математика. Утрата определенности. - [15]

Шрифт
Интервал

Теория Птолемея дала первое полное, в разумных пределах, подтверждение постоянства и неизменности природы и была воспринята как окончательное решение поставленной Платоном проблемы объяснения видимых движений небесных тел. Никакой другой из полученных в греческую эпоху результатов не может соперничать с «Альмагестом» по глубине влияния на представления о Вселенной, и ни одно сочинение, за исключением «Начал» Евклида, не обрело столь беспрекословного авторитета. 

Разумеется, в нашем кратком очерке греческой астрономии не названы многие другие достижения античных астрономов и не дано полного представления о глубине и размахе свершений тех, кого мы здесь упомянули. Греческая астрономия достигла высокого уровня развития и наглядности и весьма широко применяла математику. Кроме того, почти каждый греческий математик, в том числе и такие мастера, как Евклид и Архимед, занимался астрономией. 

Постижение физических истин не закончилось на геометрии пространства и астрономии. Греки заложили также основы механики. Механика изучает движение тел, которые можно рассматривать как материальные точки, движение протяженных тел и силы, вызывающие эти движения. В своей «Физике» ([6], т. 3, с. 59-262) Аристотель свел воедино все высшие достижения греческой механики. Как и вся аристотелева физика, его механика опирается на рациональные самоочевидные принципы, согласующиеся с наблюдениями. Хотя эта теория сохранила влияние на протяжении почти двух тысячелетий, мы не останавливаемся на ее изложении, так как она была полностью вытеснена механикой Ньютона. Существенными дополнениями к аристотелевой теории движения стали работы Архимеда по определению центров тяжести тел и его теория рычага. Во всей этой деятельности для нас наиболее существенна ведущая роль математики; тем самым получило подтверждение всеобщее убеждение в том, что в постижении законов природы первостепенное значение имеет математика. 

Не меньший интерес, чем астрономия и механика, вызвала оптика. Основы этой науки также были заложены греками. Почти все греческие философы, начиная с пифагорейцев, строили умозрительные заключения о природе света, зрения и цвета, но нас интересуют математические достижения в этой области. Первым было априорное утверждение Эмпедокла (около 490 г. до н.э.) из Агригента — города на острове Сицилия — о том, что свет распространяется с конечной скоростью. Хронологически первыми систематическими исследованиями света, сохранившимися до нашего времени, стали сочинения Евклида «Оптика» и «Катоптрика»{12}. В «Оптике» Евклид рассматривает проблемы зрения и использования зрения для определения размеров различных предметов. В «Катоптрике» (теории зеркал) показано, как ведут себя лучи света при отражении от плоских, выпуклых и вогнутых зеркал и как ход лучей сказывается на том, что мы видим. Как и «Оптика», «Катоптрика» начинается с определений, которые в действительности являются постулатами. Теорема I (аксиома в современных учебниках и монографиях), играющая основополагающую роль в геометрической оптике известна как закон отражения. Она утверждает, что угол α образуемый с поверхностью зеркала лучом света, падающим на зеркало из точки P, равен углу, образуемому с поверхностью зеркала отраженным лучом (рис. 1.6). Евклид также установил закон падения для луча, падающего на выпуклое и вогнутое зеркала: в точке касания Евклид заменил зеркало касательной плоскостью R (рис 1.7) «Оптика» и «Катоптрика» — сочинения математические не только по содержанию, но и по своей структуре. Основное место в них, как и в «Началах» Евклида, отводится определениям, аксиомам и теоремам.

Рис. 1.6. Отражение от плоского зеркала.

Рис. 1.7. Отражение от выпуклого зеркала.

 Математик и инженер Герон (I в.) вывел из закона отражения важное следствие. Если P и Q на рис. 1.6 — любые две точки, расположенные по одну сторону от прямой ST, то из всех путей, ведущих из точки P к прямой ST, a затем к точке Q, кратчайший соответствует такому положению точки R, при котором отрезки прямых PR и QR образуют с прямой ST равные углы. Следовательно, луч света, идущий из точки P к зеркалу и затем к точке Q, распространяется по кратчайшему пути. Отсюда ясно, что природа весьма «сведуща» в геометрии и использует ее с наибольшей пользой. Теорема, которую мы только что воспроизвели, заимствована нами из «Катоптрики» Герона, где рассмотрено также отражение луча света от вогнутых и выпуклых зеркал, а также от комбинаций зеркал. 

Об отражении света от зеркал различной формы было написано великое множество работ. Среди ныне безвозвратно утерянных сочинений — «Катоптрика» Архимеда, «О зажигательном зеркале» Аполлония (около 190 г. до н.э.) и «О зажигательных зеркалах» Диоклеса (около 190 г. до н.э.). Зажигательные зеркала были вогнутыми и имели форму сферического сегмента параболоида вращения (поверхности, образованной вращением параболы вокруг ее оси) и эллипсоидов вращения. Аполлонию было известно, а в книге Диоклеса содержалось доказательство, что параболическое зеркало, отражая свет от источника света, помещенного в его фокусе, собирает лучи в пучок, параллельный оси зеркала (рис. 1.8). Наоборот, если пучок падающих лучей направить параллельно оси параболического зеркала, то после отражения лучи соберутся в фокусе. Собранные в фокусе солнечные лучи вызывают резкий разогрев и способны зажечь помещенный в фокусе горючий материал, откуда и название — зажигательное зеркало. По преданию, Архимед, воспользовавшись этим свойством зажигательных зеркал, сконцентрировал солнечные лучи на римских судах, блокировавших с моря его родной город Сиракузы, и поджег неприятельский флот. Аполлонию были известны отражательные свойства и других конических сечений. Он знал, например, что все лучи, выходящие из одного фокуса эллиптического зеркала, после отражения собираются в другом фокусе. В книге III «Конических сечений» приведены соответствующие геометрические свойства эллипса и гиперболы.


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.