Математика. Утрата определенности. - [16]
Рис. 1.8. Отражение от параболического зеркала.
Греки заложили основы многих других наук. Особенно велика их роль как основоположников географии и гидростатики. Эратосфен из Кирены (около 284-192 гг. до н.э.), один из наиболее образованных людей античности, директор Александрийской библиотеки, вычислил расстояния между многими населенными пунктами на той части Земли, которая была известна древним грекам. Ему также принадлежит широко известное ныне вычисление длины окружности Земли. В своей «Географии» Эратосфен помимо описаний используемых им математических методов объяснил причины изменений, происходящих на поверхности Земли.
Самым обширным сочинением по географии была «География» Птолемея в восьми книгах. В ней Птолемей не только дополнил и расширил труд Эратосфена, но и определил положение на поверхности Земли восьми тысяч мест, указав те самые их широты и долготы, которыми мы пользуемся и поныне. Птолемей изложил также методы составления карт, применяемые и в современной картографии, в частности метод стереографической проекции. Во всех трудах по географии основную роль играла сферическая геометрия, которую греки применяли с IV в. до н.э.
Гидростатика занимается изучением давления, оказываемого жидкостью на погруженное в нее тело. Здесь основополагающим трудом по праву считается сочинение Архимеда «О плавающих телах». Как и все остальные сочинения, о которых мы упоминали, оно чисто математическое как по своему подходу, так и по способу получения результатов. В частности, именно в этом сочинении сформулирован знаменитый принцип, известный ныне под названием закона Архимеда, который гласит, что на погруженное в жидкость тело действует выталкивающая сила, равная весу вытесненной телом жидкости. Таким образом, мы обязаны Архимеду объяснением того, каким образом человек может остаться на плаву в мире сил, стремящихся утопить его.
Хотя в александрийский период дедуктивный подход к математике и математическому изложению законов природы играет главенствующую роль, следует отметить, что в отличие от своих предшественников классического периода александрийцы не отказывались от экспериментов и наблюдений. Так, александрийцы использовали результаты высокоточных астрономических наблюдений, которые в течение двух тысячелетий производили вавилоняне. Гиппарх составил каталог звезд, наблюдавшихся в его время. Среди изобретений александрийцев (сделанных главным образом Архимедом, а также математиком и инженером Героном) мы находим солнечные часы, астролябии и устройства для использования энергии пара и воды.
Особую известность приобрел Александрийский музей, основанный непосредственным преемником Александра Македонского в Египте — Птолемеем Сотером. Музей стал родным домом ученых; его библиотека насчитывала около 400 тыс. томов. Поскольку ее хранилища не могли вместить все рукописи, еще 300 тыс. томов были размещены в храме Сераписа. Ученые не только занимались наукой, но и проводили занятия с учениками.
Своими математическими трудами и многочисленными исследованиями греки существенно подкрепили тезис о том, что Вселенная зиждется на математических принципах. Математика внутренне присуща природе, является истиной о структуре природы, или, если воспользоваться выражением Платона, реальностью о физическом мире. Закон и порядок существует в природе, и математика — ключ к пониманию этого порядка. Более того, человеческий разум способен проникнуть в сокровенный план природы и открыть математическую структуру Вселенной.
Толчком к созданию концепции логического, математического подхода к познанию природы послужили, по-видимому, «Начала» Евклида. Хотя сочинение Евклида предназначалось для изучения физического пространства, структура самого сочинения, его необычайное остроумие и ясность изложения стимулировали аксиоматическо-дедуктивный подход не только к остальным областям математики, например к теории чисел, но и ко всем естественным наукам. Через «Начала» Евклида понятие логической структуры всего физического знания, основанного на математике, стало достоянием интеллектуального мира.
Тем самым греки установили союз математики и изучения явлений природы, который стал фундаментом всей современной науки. Вплоть до конца XIX в. поиск математических принципов, лежащих в основе природы, был поиском истины. Глубокое убеждение в том, что математические законы открывают истины о природе, привлекало к математике самых глубоких и возвышенных мыслителей.
II
Расцвет математических истин
Главной целью всех исследований внешнего мира должно быть открытие рационального порядка и гармонии, которые бог ниспослал миру и открыл нам на языке математики.
Иоганн Кеплер
Созданная греками великая цивилизация распалась по нескольким причинам. Первой причиной ее заката было постепенное завоевание римлянами Греции, Египта и Ближнего Востока. Распространяя свое владычество, римляне не ставили целью распространение своей культуры. Завоеванные территории римляне быстро превращали в колонии, из которых грабежом и поборами выкачивали колоссальные богатства.
Другой удар языческой культуре греков нанесло возникновение христианства. Создатели новой религии включили в нее множество греческих и восточных мифов и обычаев с очевидным намерением сделать христианство более доступным для новообращенных, но в то же время заняли непримиримую позицию по отношению к языческой науке и даже осмеивали математику, астрономию и естественные науки. Несмотря на жестокие преследования со стороны римлян, христианство продолжало распространяться и достигло такого могущества, что римский император Константин Великий Миланским эдиктом 313 г. провозгласил христианство официальной религией Римской империи. Несколько позднее Феодосий (правивший в 379-392 гг.) запретил языческие религии и в 392 г. приказал разрушить языческие храмы.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.