Математика. Утрата определенности. - [12]
Из аксиом с помощью рассуждений выводятся заключения. Существует много типов рассуждений, например рассуждения по индукции, по аналогии и дедукции. Правильность заключения гарантирует лишь один из многих типов рассуждений. Заключение «Все яблоки красные», сделанное на основании того, что тысяча просмотренных яблок оказались красными, индуктивно и поэтому не абсолютно надежно. Заключение «Джон сможет окончить этот колледж», сделанное потому, что брат Джона, унаследовавший от родителей те же способности, окончил колледж, получено с помощью рассуждения по аналогии и заведомо не надежно. С другой стороны, дедуктивное рассуждение, несмотря на множество различных форм, гарантирует истинность заключения. Так, допуская, что все люди смертны и Сократ — человек, следует прийти к заключению, что Сократ смертен. Используемое в этом рассуждении правило логики является одной из форм суждения, которое Аристотель назвал силлогистическим выводом. К правилам дедуктивного рассуждения Аристотель относил также закон противоречия (никакое высказывание не может быть одновременно истинным и ложным) и закон исключенного третьего (любое высказывание должно быть либо истинным, либо ложным).
Аристотель, а вслед за ним и весь мир приняли за неоспоримую истину, что применение правил дедуктивного вывода к любым посылкам гарантирует получение заключений, не уступающих по надежности посылкам. Иначе говоря, если посылки истинны, то истинны и заключения. Следует отметить, в особенности для обсуждения в дальнейшем, что Аристотель абстрагировал правила дедуктивной логики из рассуждений, которыми тогда уже широко пользовались математики.{8} Дедуктивная логика — дитя математики.
Хотя почти все греческие философы считали дедуктивный вывод единственно надежным методом получения истины, Платон придерживался несколько иных взглядов. Не выдвигая возражений против дедуктивного доказательства, Платон тем не менее считал его поверхностным, поскольку математические аксиомы и теоремы существуют в некотором объективном, независимом от человека мире, и в соответствии с учением Платона об анамнезисе человеку необходимо лишь вспомнить эти аксиомы, чтобы сразу же распознать их неоспоримую истинность. Теоремы, если воспользоваться сравнением из диалога Платона «Теэтет», подобны птицам в птичнике. Они существуют сами по себе, и необходимо лишь «схватить» их. В диалоге Платона «Менон» Сократ с помощью искусно поставленных вопросов вытягивает из молодого раба утверждение, что площадь квадрата, построенного на гипотенузе равнобедренного прямоугольного треугольника, вдвое больше площади квадрата, построенного на любом из катетов. Сократ торжествующе заключает, что искусно поставленные вопросы помогли рабу, никогда не изучавшему геометрию, вспомнить теорему.
Важно правильно оценивать, сколь радикальной была приверженность дедуктивному доказательству. Предположим, что некий ученый, измерив сумму углов ста различных треугольников, отличающихся расположением, размерами и формой, обнаружил, что в пределах точности измерений сумма углов всегда оказывается равной 180°. Разумеется, ученый решил бы, что сумма углов любого треугольника равна 180°. Но его доказательство было бы индуктивным, а не дедуктивным — и поэтому неприемлемым с точки зрения математики. Он мог бы точно так же проверить сколько угодно четных чисел и убедиться, что каждое из них представимо в виде суммы двух простых чисел. Но подобная проверка не является дедуктивным доказательством, и ее результат не сочли бы за математическую теорему. Итак, мы видим, что дедуктивность доказательства — требование весьма ограничивающее. Тем не менее греческие математики, бывшие в большинстве своем философами, упорно настаивали на исключительном использовании дедуктивных рассуждений, так как именно дедукция приводит к абсолютным истинам, к вечным ценностям.
Предпочтение, отдаваемое философами дедуктивным рассуждениям, обусловлено еще одной причиной. Философов интересуют лишь самые общие факты, касающиеся человека и физического мира, а чтобы установить такие универсальные истины, как то, что человек по существу добр, что в мире царит порядок или что человеку есть ради чего жить, дедуктивный вывод из подходящих исходных принципов осуществим в гораздо большей мере, чем индукция или рассуждение по аналогии.
Еще одну причину того, что греки классического периода отдавали предпочтение дедукции, можно усмотреть в организации их общества. Философией, математикой и искусством, естественно, увлекались прежде всего состоятельные люди, а не те, кто занимался физическим трудом. Все домашнее и общественное хозяйство держалось на рабах, метеках (свободных людях, не имевших, однако, гражданских прав){9} и на свободных гражданах — ремесленниках; они же представляли все важнейшие профессии. Образованные свободные граждане не занимались физическим трудом и редко участвовали в торговых сделках. Платон провозгласил, что профессия лавочника недостойна свободнорожденного, и предложил подвергать наказанию всякого гражданина, который унизит себя подобным занятием, как совершившего преступление. Аристотель утверждал, что в идеальном государстве ни один гражданин (в отличие от рабов) не должен заниматься никаким ремеслом. Беотийцы (одно из греческих племен) запрещали тем, кто запятнал себя участием в торговых сделках, в течение десяти лет занимать общественные должности. В таком обществе эксперимент и наблюдение были мыслителям чужды. Считалось, что источники такого рода не могут помочь получить результаты научного, в частности математического, характера.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.