Математика. Утрата определенности. - [10]
Платон пошел дальше пифагорейцев в том, что хотел не только понять природу с помощью математики, но и заменить математикой природу. Он считал, что более проницательный взгляд на физический мир дал бы возможность открыть основные истины, которые позволили бы разуму уже самостоятельно достроить все остальное. С момента обнаружения первичных истин дальнейшее было бы чистой математикой. Математика заменила бы физическое исследование.
В «Жизни Марцелла» Плутарх сообщает, что знаменитые современники Платона Евдокс и Архит использовали физические соображения для «доказательства» математических истин. Но Платон с негодованием отвергал такие доказательства как подрывающие основы геометрии, ибо они построены не на чистых рассуждениях, а на чувственных восприятиях.
Отношение Платона к астрономии дает ясное представление о том, к какого рода знанию надлежало, по его мнению, стремиться. Астрономия, утверждал Платон, не должна заниматься изучением движений наблюдаемых небесных тел. Расположение светил на небе и их видимые движения достойны всяческого восхищения и поистине прекрасны, но одни лишь наблюдения и объяснения движений далеко еще не составляют истинной астрономии. Дабы достичь истинной астрономии, необходимо «предоставить небеса самим себе», ибо истинная астрономия изучает законы движения истинных звезд в математических небесах, несовершенным подобием которых является видимое небо. Платон поощрял приверженность теоретической астрономии, занятие которой услаждает разум, а не тешит глаз, ибо ее объекты воспринимаются разумом, а не зрением. Различные фигуры, которые глаз видит на небе, надлежит использовать только как вспомогательные чертежи в поисках высших истин. К астрономии мы должны подходить, как к геометрии, рассматривая ее как серию задач, лишь подсказываемых наблюдаемыми светилами. Применения астрономии в навигации, при составлении календарей и вычислении времени для Платона интереса не представляли.
Совершенно иную концепцию изучения реального мира и отношения математики к реальности развил Аристотель, хотя он и был учеником Платона и много у Платона почерпнул. Аристотель критиковал Платона за идею о двух различных мирах и за сведение естественных наук к математике. Аристотель был физиком в буквальном смысле этого слова. В материальных телах он видел первичную субстанцию и источник реальности. По Аристотелю, физика и наука в целом должны заниматься изучением физического мира и извлекать истину из этих исследований. Подлинное знание достигается на основе чувственного опыта с помощью интуиции и абстрагирования. Абстракции не существуют независимо от человеческого разума.
Аристотель неоднократно подчеркивал, что универсалии — общие понятия — абстрагированы от реальных вещей. Для получения этих абстракций «мы начинаем с вещей познаваемых и наблюдаемых и переходим к вещам менее наглядным, которые по своей природе более понятны и более познаваемы». Аристотель брал наглядные, чувственные качества вещей, выхолащивал их и возводил до независимых, абстрактных понятий.
Какое место занимала математика в развитой Аристотелем схеме вещей? Основополагающими в схеме Аристотеля были физические науки. Математике отводилась вспомогательная роль в изучении природы при описании таких внешних свойств, как форма и размеры. Кроме того, математика помогала объяснять причины тех явлений, которые можно наблюдать в материальном мире. Так, геометрия может помочь в объяснении наблюдений из области оптики и астрономии, а арифметические пропорции могут служить основой гармонии. Но математические понятия и принципы заведомо являются абстракциями, корни которых уходят в реальный мир. Поскольку же они абстрагированы из реального мира, то они применимы к нему. Человеческий разум обладает особой способностью приходить к таким идеализированным свойствам физических объектов, отправляясь от ощущений, и создаваемые им абстракции с необходимостью должны быть истинными.
Даже нашего беглого обзора взглядов тех философов, которые сформировали духовный мир греков, достаточно, чтобы понять главное: все они подчеркивали необходимость изучения природы для понимания и оценки лежащей в основе всего сущего реальности. Кроме того, со времен пифагорейцев почти все философы утверждали, что природа устроена на математических основах. К концу классического периода окончательно сформировалось учение о природе, основанной на математических принципах, и начался планомерный поиск математических законов. Хотя это учение отнюдь не предопределило все последующее развитие математики, получив достаточно широкое распространение, оно оказало влияние на величайших математиков, в том числе и на тех, кто непосредственно не разделял его. Из всех достижений умозрительных построений древних греков подлинно новаторской была концепция космоса, в котором все подчинено математическим законам, постигаемым человеческим разумом.
Греки преисполнились решимости доискаться до истин и, в частности до истин о математических основах природы. Как следует приступить к поиску истин и как при этом гарантировать, что поиск действительно приводит к истинам? Греки предложили «план» такого поиска. Хотя он создавался постепенно на протяжении нескольких веков (VI-III вв. до н.э.) и историки науки расходятся во мнениях относительно того, когда и кем этот план был впервые задуман, к III в. до н.э. «план поиска истин» был доведен до совершенства.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.