Математика. Утрата определенности. - [9]

Шрифт
Интервал

([6], т. 1, с. 75-76.)

Натурфилософию пифагорейцев лишь с большой натяжкой можно назвать состоятельной. Эстетические соображения, к которым примешивается навязчивое стремление найти числовые соотношения, не могли не приводить к утверждениям, выходящим за пределы реальных наблюдений. Пифагорейцам не удалось сколько-нибудь существенно продвинуть ни одну из областей физической науки. С полным основанием их теории можно было бы назвать поверхностными. Но то ли по счастливому стечению обстоятельств, то ли благодаря гениальной интуиции пифагорейцам удалось сформулировать два тезиса, общезначимость которых подтвердило все последующее развитие науки: во-первых, что основополагающие принципы, на которых зиждется мироздание, можно выразить на языке математики; во-вторых, что объединяющим началом всех вещей служат числовые отношения, которые выражают гармонию и порядок природы. Современная наука разделяет пифагорейскую приверженность числу, хотя, как мы увидим далее, современные теории представляют собой гораздо более искусную форму пифагореизма. 

Более поздних философов, пришедших на смену пифагорейцам, не в меньшей мере интересовали природа реальности и математический план, лежащий в ее основе. Особое место среди преемников пифагорейцев занимают Левкипп (V в. до н.э.) и Демокрит (ок. 460-370 гг. до н.э.), наиболее отчетливо для своего времени сформулировавшие атомистическое учение. Согласно философии, которой они придерживались, мир состоит из бесконечного числа простых и вечных атомов. Атомы отличаются по форме, размерам, твердости, порядку и расположению. Все, что мы видим вокруг, представляет собой ту или иную комбинацию атомов. Хотя геометрические величины, например, отрезок прямой, бесконечно делимы, атомы являются мельчайшими, не поддающимися дальнейшему дроблению частицами. Одни свойства тел, такие, как форма, размеры или твердость, определяются свойствами атомов. Другие, как, например, вкус, тепло или цвет, определяются не самими атомами, а воздействием атомов на того, кто испытывает ощущения. Чувственное восприятие ненадежно, так как оно существенно зависит от индивидуума. Подобно пифагорейцам, атомисты утверждали, что реальность, лежащую в основе постоянно меняющегося многообразия физического мира, можно выразить на языке математики. Кроме того, атомисты считали, что все происходящее в мире строго предопределено математическими законами.

Самой влиятельной после пифагорейцев группой мыслителей, расширившей и распространившей учение о математическом плане, лежащем в основе природы, были платоники, возглавляемые, как о том говорит название этой школы, Платоном Афинским. Хотя Платон (427-347 гг. до н.э.) и заимствовал некоторые фрагменты учения пифагорейцев, в достопамятном IV в. до н.э. он был ведущей фигурой духовной жизни Греции. Платон основал в Афинах Академию — центр, который привлек к себе ведущих мыслителей его времени и существовал в течение девяти столетий. 

Вера Платона в рациональность устройства Вселенной, вероятно, лучше всего выражена в его диалоге «Филеб»: 

Сократ… Начнем же хотя бы со следующего вопроса… 

Протарх. С какого? 

Сократ. Скажем ли мы, Протарх, что совокупность вещей и это так называемое целое управляется неразумной и случайной силой как придется, или же, напротив, что целым правит, как говорили наши предшественники, ум и некое изумительное, всюду вносящее лад разумение? 

Протарх. Какое же может быть сравнение, любезнейший Сократ, между этими двумя утверждениями! То, что ты сейчас говоришь, кажется мне даже нечестивым. Напротив, сказать, что ум ускоряет все, достойное зрелище мирового порядка — Солнца, Луны, звезд и всего круговращения небесного свода; да и сам я не решился был утверждать и мыслить об этом иначе.

([7], с. 33-34.)

Более поздние пифагорейцы и платоники проводили резкое различие между миром вещей и миром идей. Тела и отношения в материальном мире несовершенны, преходящи и тленны, но существует другой, идеальный, мир, в котором истины абсолютны и неизменны. Именно эти истины и надлежит рассматривать философу. О физическом же мире мы можем иметь только мнения. Видимый, чувственный мир не более чем смутная, расплывчатая и несовершенная реализация идеального мира: «вещи суть тени идей, отбрасываемых на экран опыта». Реальность надлежит искать в идеях чувственных, в физических объектах. Платон сказал бы, что в лошади, в доме или в прекрасной женщине нет ничего реального. Реальность заключена в универсальном типе (идее) лошади, дома или прекрасной женщины. Непреходящее знание может быть получено только относительно чистых идеальных форм. Только такие идеи постоянны и неизменны, и знание относительно них прочно и неуничтожимо.

Платон утверждал, что реальность и рациональность физического мира могут быть постигнуты только с помощью математики идеального мира. То, что идеальный мир устроен на математических началах, не вызывало сомнений. Плутарх приводит знаменитое изречение Платона: «Бог всегда является геометром». В диалоге «Государство» Платон говорит о том, что «знание, к которому стремятся геометры, есть знание вечного, а не того, что тленно и преходяще». Математические законы платоники считали не только сущностью реальности, но и вечными и неизменными. Числовые отношения также были частью реальности, а скоплениям вещей отводилась роль подобия чисел. Если у ранних пифагорейцев числа были имманентны (внутренне присущи) вещам, то у Платона числа стали трансцендентны вещам.


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.