Математика. Поиск истины. - [9]

Шрифт
Интервал

По вопросу о материи Юм разделял мнение Беркли. Кто гарантирует нам бытие перманентно существующего мира телесных объектов? Все, что мы знаем, — это наши чувственные впечатления о таком мире. Соединяя идеи по сходству и располагая их в определенной последовательности, память упорядочивает мир идей так же, как сила тяжести устанавливает порядок во внешнем мире. Пространство и время — всего лишь способ и порядок, в котором являются нам идеи. Ни пространство, ни время не есть объективные реальности. Сила и прочность наших идей вводят нас в заблуждение, заставляя верить в такие реальности.

Вывод о существовании внешнего мира с неизменными свойствами ничем не обоснован. Нет оснований полагать, будто существует что-нибудь кроме впечатлений и идей, ничему не соответствующих и ничего не представляющих. Следовательно, не может быть и научных законов, относящихся к перманентному объективному внешнему миру; то, что мы называем такими законами, — не более чем удобное обозначение для некоторой суммы впечатлений. У нас нет способа узнать, повторятся ли те последовательности впечатлений, которые мы наблюдали. Мы сами представляем собой всего лишь разрозненные наборы восприятий, т.е. впечатления и идей. Мы существуем только в этом смысле. При любой попытке с нашей стороны воспринять самих себя мы доходим лишь до восприятия. Для любого человека все остальные люди и предполагаемый внешний мир — всего лишь восприятия, и нет гарантии, что они действительно существуют.

Лишь одно препятствие стояло на пути всепроникающего скептицизма Юма — существование общепризнанных истин самой математики. Просто отмахнуться от них Юм не мог, и ему не оставалось ничего другого, как попытаться принизить ценность математических истин. По мнению Юма, теоремы чистой математики — это излишние утверждения, ненужные повторения одного и того же различными способами. То, что дважды два — четыре, не ново. В действительности дважды два — всего лишь иной способ записать или назвать устно число «четыре». Следовательно, и это, и другие утверждения арифметики — не более чем тавтология. Что же касается теорем геометрии, то они представляют собой повторения в более сложной форме аксиом, в которых в свою очередь не больше смысла, чем в утверждении о том, что дважды два — четыре.

В своем «Трактате о человеческой природе» Юм скептически отозвался о силе разума как орудия для рационального объяснения:

Ни один объект на обнаруживает себя качествами, доступными нашим ощущениям, или причинами, породившими его, или действиями, проистекающими от него; без помощи опыта наш разум не в состоянии сделать какое-либо заключение относительно реального бытия и существования.

Опыт может подсказать причину и действие, следствие, но основанное на опыте убеждение лишено рациональной основы. Убеждение разумно только в том случае, если его отрицание логически противоречиво, но ни одно убеждение, к которому нас приводит опыт, не отвечает этому требованию. Подлинной науки о перманентном и объективном мире не существует; наука чисто эмпирическая.

Общую проблему познания физического мира Юм решает, отрицая самую возможность получения истин о нем. Ни теоремы математики, ни существование Бога, ни существование внешнего мира, причинности, природы, ни чудеса истинами не являются. Так Юм с помощью разума разрушил то, что было создано разумом, подчеркивая в то же время ограниченность возможностей последнего.

Окончательный вывод всей философии Юма — отрицание им наивысшей способности человека, способности познания мира, — большинство мыслителей XVIII в. восприняло весьма неодобрительно. Слишком велики были достижения математики и другие проявления человеческого разума, чтобы от них так легко отказаться. Иммануил Кант (1724-1804) без обиняков выразил свое непринятие необоснованного расширительного толкования Юмом теории познания Локка: разум должен снова занять подобающее ему место. Кант не сомневался, что человек располагает идеями и истинами, представляющими нечто большее, нежели простое соединение чувственного опыта.

Тем не менее при тщательном изучении итог размышлений Канта оказался не столь обнадеживающим. В своем сочинении «Пролегомены ко всякой будущей метафизике, могущей появиться как наука» (1783) Кант писал:

Мы можем с достоверностью сказать, что некоторые чистые априорные синтетические познания имеются и нам даны, а именно чистая математика и чистое естествознание, потому что оба содержат положения, частью аподиктически достоверные на основе одного только разума, частью же на основе общего согласия из опыта и тем не менее повсеместно признанные независимыми от опыта.

([6], с. 89.)

В «Критике чистого разума» (1781) Кант приходит к более утешительному выводу, признавая истинами все аксиомы и теоремы математики. Почему, спрашивает себя Кант, мы столь охотно приемлем эти истины? Сам по себе опыт не может служить оправданием нашей готовности к признанию математических истин. Ответить на поставленный вопрос, по мнению Канта, можно лишь после того, как будет найден ответ — на более общий вопрос: как возможна сама наука математика?


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.