Математика. Поиск истины. - [11]
В более общем плане Кант полагал, что мир науки есть мир чувственных впечатлений, упорядоченных и управляемых рассудком в соответствии с такими врожденными категориями, как пространство, время, причина, действие и субстанция. Наш разум как бы обставлен мебелью, в которой с удобством могут расположиться гости. Чувственные впечатления поступают из внешнего мира, но этот мир, к сожалению, непознаваем. Реальность может быть познана только в субъективных категориях познающего разума. Следовательно, невозможен иной способ организации опыта, чем геометрия Евклида и механика Ньютона.
Согласно Канту, по мере расширения опыта и возникновения новых наук, разум не формулирует новые принципы путем обобщения нового опыта: для интерпретации последнего лишь включаются дополнительные, ранее не использовавшиеся области рассудка. Способность разума к пониманию возрастает с накоплением опыта. По этой причине одни истины (например, законы механики) постигаются позже других, известных на протяжении столетий.
Кант утверждал также, что мы не можем надеяться приобрести достоверное знание на основании одного лишь чувственного знакомства с объектами. Мы никогда не познаем реальные вещи в себе. Но если мы способны познать что-нибудь достоверно, то это должно быть результатом процесса, происходящего в нашем рассудке при изучении данных, полученных из внешнего мира.
Философия Канта, которую мы обрисовали лишь в самых общих чертах, — это прославление разума, однако Кант приписал ему роль исследователя не природы, а сокровенных тайн человеческой души. Опыт Кант признавал лишь как необходимый элемент познания, так как ощущения, вызываемые внешним миром, поставляют «сырой материал», организуемый рассудком. Математика обрела в философии Канта свое место открывателя непреложных законов разума.
Из приведенного нами беглого очерка теории познания Канта видно, что существование математических истин он сделал краеугольным камнем своей философии. В частности, Кант опирался на истины евклидовой геометрии. Увы! Созданная в XIX в. неевклидова геометрия опровергла все аргументы Канта,
Несмотря на превосходную философию Канта и признание его работ, наиболее знаменитый из английских философов XIX в. Джон Стюарт Милль (1806-1873) вернулся к взглядам Юма, несколько видоизменив их. Милль был позитивистом: он утверждал, что, хотя знание в основном проистекает из опыта, оно включает также соотношения, формулируемые познающим разумом относительно чувственных данных. Доказать существование внешнего мира невозможно, но в равной мере невозможно доказать, что внешний мир не существует.
Под внешним объектом мы понимаем нечто существующее независимо от того, мыслим мы его или нет, остающееся неизменным, даже если вызываемые им ощущения изменяются, и общее для многих наблюдателей, хотя испытываемые ими ощущения могут отличаться. По Миллю, представление о внешнем мире в любой момент времени лишь в малой степени состоит из реальных ощущений, а в основном — из возможных ощущений (не тех, которые некто испытывает, а тех, которые он испытал бы, двигаясь или поворачивая голову). Материя есть то, — что может перманентно порождать ощущения. Память, согласно Миллю, также играет некую роль в познании такого типа.
Внешний мир мы познаем только через ощущения. Такое знание несовершенно, и нам неведомы его точные границы и протяженность. Простые идеи, рожденные ощущениями, наш разум комбинирует в сложные; такое знание номинально, но не существенно. Знание, добытое методом индукции, не достоверно, а лишь вероятно, но это — все, чем мы располагаем в науке и можем руководствоваться в жизни.
Как считал Милль, наши умозаключения в математике, например в евклидовой геометрии, необходимы только в том смысле, что они следуют из исходных допущений. Однако сами исходные допущения (аксиомы) основаны на наблюдениях и представляют собой обобщения опыта. Арифметика и алгебра также основаны на опыте. Выражения 2 + 2 = 3 + 1 = 4 являются психологическими обобщениями. Алгебра же есть не что иное, как более абстрактное продолжение таких обобщений.
Методу индукции Милль придавал первостепенное значение, считая его источником возможных обобщений, подобных законам природы. Причина — не более как антецедент последующего. Все происходящее имеет причину, выводимую из опыта. Именно в этом и состоит по Миллю точный смысл принципа однородности природы.
Помимо экспериментального знания нет ничего, что было бы возможно или необходимо. Опыт и психология могут полностью объяснить наше знание, и на них зиждется наша уверенность в существовании внешнего мира. Милль был эмпириком, хотя его взгляды отличаются от скептицизма Юма. Идеи Милля близки к эмпиризму и логическому позитивизму XX в. и, можно сказать, способствовали возникновению данных направлений в философии.
Какие выводы относительно существования внешнего мира и надежности нашего знания можно сделать из этого ретроспективного обзора взглядов выдающихся философов прошлого?{1} Мы разделяем точку зрения Эйнштейна:
Вера в существование внешнего мира, независимого от воспринимающего субъекта, лежит в основе всего естествознания. Но так как чувственное восприятие дает информацию об этом внешнем мире, или о «физической реальности», опосредствовано, мы можем охватить последнюю только путем рассуждений.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.