Математика. Поиск истины. - [10]
Кант избрал совершенно новый подход к проблеме получения человеком истинного знания. Первый его шаг состоял в том, чтобы провести различие между двоякого рода суждениями, дающими знание. Суждения первого рода Кант называл аналитическими; они не дают нового знания. Примером может служить суждение «Все тела протяженны». Оно лишь констатирует в явном виде свойство, присущее всем телам в силу того, что это — тела, и не сообщает нам ничего нового. Суждения второго рода, выводимые каким-то образом нашим разумом независимо от опыта, Кант называл априорными.
По мысли Канта, опыт не может быть единственным источником истины, ибо опыт — лишь пестрая смесь ощущений, в которую не привнесены ни рациональное начало, ни организация. Следовательно, сами по себе наблюдения не дают истин. Истины, если они существуют, должны быть априорными суждениями. Кроме того, чтобы быть подлинным знанием, истины должны быть синтетическими суждениями — давать новое знание.
За убедительным примером не нужно ходить далеко: он в совокупности математического знания. Почти все аксиомы и теоремы математики Кант относит к априорным синтетическим суждениям. Утверждение о том, что прямая — это кратчайшее расстояние между двумя точками, заведомо синтетическое, ибо сочетает в себе две идеи — прямолинейности и кратчайшего расстояния, ни одна из которых не выводима из другой. Вместе с тем это суждение априорно, так как никакой опыт с прямыми и никакие измерения не могли бы убедить нас в том, что перед нами неизменная универсальная истина, какой считал это утверждение Кант. Таким образом, Кант не сомневался, что люди обладают априорными синтетическими суждениями, т.е. подлинными истинами.
Кант попытался пойти дальше. Почему, спросил он себя, мы с такой готовностью принимаем за истину утверждение о том, что прямая — кратчайшее расстояние между двумя точками? Откуда нашему разуму известны такие истины? Ответить на этот вопрос мы могли бы, если бы знали ответ на вопрос, как возможна сама математика. Кант полагал, что формы пространства и времени присущи нашему разуму независимо от опыта. Он называл эти формы созерцаниями, считая их чисто априорными средствами познания, не основанными ни на опыте, ни на логическом рассуждении. Так как созерцание пространства априори присуще разуму, некоторые аксиомы о пространстве постигаются разумом непосредственно, и геометрии остается лишь извлекать логические следствия из этих аксиом. Законы пространства и времени, законы разума предшествуют познанию реальных явлений, делая его возможным. По словам Канта, «всеобщие и необходимые законы опыта принадлежат не самой природе, а только разуму, который вкладывает их в природу».
Мы воспринимаем, организуем и постигаем опыт в соответствии с теми формами мысли, которые присущи нашему разуму. Опыт попадает в них, словно тесто в форму. Рассудок отпечатывает их на воспринятых чувственных впечатлениях, вынуждая ощущения подстраиваться под априорные формы мысли. Поскольку созерцание пространства присуще разуму, он автоматически постигает некоторые формы пространства. Такие постулаты геометрии, как «прямая — кратчайшее расстояние между двумя точками» или «через любые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну», а также аксиома Евклида о параллельности, которые Кант называл априорными синтетическими суждениями, являются частью «оснащения» нашего разума. Геометрия как наука занимается изучением логических следствий из этих постулатов. Тот факт, что рассудок воспринимает опыт в понятиях «пространственной структуры», предопределяет согласие опыта с исходными аксиомами, постулатами и теоремами геометрии.
Поскольку Кант строил пространство из клеток человеческого мозга, он не видел оснований для того, чтобы не сделать это пространство евклидовым. Неспособность представить себе другую геометрию, убедила его в том, что таковой просто не существует. Утверждая истинность евклидовой геометрии, он в то же время доказывал существование априорных синтетических суждений. По Канту, законы евклидовой геометрии не присущи внешнему миру, а сам мир не задуман Богом так, чтобы в нем выполнялась евклидова геометрия. Законы геометрии — это механизм, позволявший человеку привносить в ощущения организацию и рациональное начало. Что же касается Бога, то, по утверждению Канта, природа божественного лежит за пределами рационального знания, но мы должны верить в Бога. Но при всей дерзости Канта в философии его суждения о геометрии были весьма опрометчивы: прожив почти безвыездно в своем родном городе Кенигсберге [ныне Калининград] в Восточной Пруссии, Кант тем не менее вздумал определить геометрию мира.
Каких взглядов придерживался Кант относительно математических законов естествознания? Поскольку весь опыт воспринимается через мыслительные схемы пространства и времени, математика должна быть применима ко всему опыту. В «Метафизических начальных основаниях естествознания» (1787) Кант трактует законы Ньютона и следствия из них как самоочевидные. Он утверждает, будто ему удалось доказать, что первый закон Ньютона может быть выведен из чистого разума и что этот закон — единственное допущение, при котором природа может быть познана человеческим разумом.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.