Математика и искусство - [128]
От того, как творил древнерусский мастер, перейдем к тому, что он творил. Слово "икона" в переводе с греческого означает образ, изображение. В центре внимания иконы было изображение Христа, Богоматери, святых и сцен из их жизни. Следовательно, в иконе господствовал "портрет", ближний план, и практически не было пейзажа, плана дальнего. Но согласно второму выводу перцептивная перспектива ближнего, не слишком протяженного плана практически совпадает с аксонометрией.
Так Раушенбах приходит к теоретическому выводу о том, что перспективной основой древнерусской живописи является аксонометрия. Перспективная основа — это еще не система перспективы, а только некоторое приближение к ней, приближение, допускающее разного рода отклонения. Этот вывод подтверждается анализом древнерусской живописи. Например, мы знаем, что подножие правого ангела в "Троице" Рублева дано в аксонометрии, а в изображении левого подножия допущено отклонение в сторону обратной перспективы. Более яркой иллюстрацией к сказанному является новгородская икона "Введение во храм", в которой аксонометрическая основа живописи очевидна. Но и здесь также хорошо видно, что древнерусский иконописец не был педантом от аксонометрии и легко допускал отклонения как в сторону прямой, так и в сторону обратной перспективы.
И все-таки отклонения в сторону обратной перспективы в древнерусской живописи преобладали. Чем же они были вызваны? На этот трудный вопрос нет однозначного ответа. Б. В. Раушенбах называет пять причин появления обратной перспективы:
1. Действие механизма константности формы. Мы знаем, что благодаря действию этого механизма форма знакомого предмета воспринимается человеком не как ее сетчаточный образ, а более близкой к реальным очертаниям этой формы. А как механизм константности формы "действует" на художника? Чтобы прояснить этот вопрос, Раушенбах рассматривает простой пример изображения параллелепипедов табурета и Евангелия, которые были излюбленными атрибутами древнерусской иконографии. На рисунке а показана аксонометрия этих предметов. Однако под действием механизма константности формы художник видит верхнюю крышку табурета (боковые грани книги) более плоско, ближе к их истинной форме, как показано штриховой линией на рисунке а. Но тогда сразу возникают трудности.
Введение во храм. Новгородская икона. XV в.
В случае с табуретом можно показать его ножки, как и раньше, в аксонометрии (рис. б). Однако тогда возникает впечатление, будто ножки табурета повисли в воздухе. Отчего это происходит? Дело в том, что механизм константности формы действует лишь на материальные, видимые, предметы, форма которых заранее известна. А мыслимый квадрат, в углах которого ножки касаются пола, есть нечто абстрактное. Механизм константности формы не должен "поднимать" ножки табурета, они остаются на месте, и тогда возникает обратная перспектива табурета (рис. в). В такой обратной перспективе изображен табурет левого ангела в "Троице" Рублева. Еще лучше ее видно на миниатюре из Евангелия XVI века.
В случае с Евангелием механизм константности формы приводит к разрыву боковых сторон книги (рис. б). Однако даже самый смелый современный художник не позволяет себе допускать разрывы там, где хорошо известно, что изображаемая форма непрерывна. Не мог себе такой вольности позволить и древнерусский иконописец. Поэтому он "склеивает" боковые грани книги некоей средней линией, и в результате получается обратная перспектива Евангелия (рис. в). Такие изображения мы встречали на с. 313.
Схема возникновения обратной перспективы (по Б. В. Раушенбаху). Аксонометрическое изображение (а), действие механизма константности формы (б), обратная перспектива (в)
2. Учет бинокулярности зрения. Сегодня экспериментально установлено, что на небольших расстояниях бинокулярность зрения может привести к эффекту слабой обратной перспективы. Этот факт для нас, с детства воспитанных на линейной перспективе фотоаппарата, кино и телевидения, а также на прямой ренессансной перспективе, кажется парадоксальным. Даже в песенке поется о том, что "рельсы, как и водится, у горизонта сходятся", а тут вдруг расхождение параллельных! Но факты — вещь упрямая. Более того, существуют способы, позволяющие натренировать свой глаз на обратную перспективу. Такой "обратноперспективный" взгляд имеет, например, Б. В. Раушенбах.
Но тогда становится совершенно понятным и естественным, что древнерусский художник, еще не отягощенный канонами прямой ренессансной перспективы, рисовал ближний план таким, каким он его видел, т. е. в легкой обратной перспективе. В дальнейшем, правда, обратная перспектива часто принимала гипертрофированные формы. Но это можно понять, если учесть, что обратная перспектива стала своеобразным художественным каноном, а древнерусский иконописец никогда не писал с натуры.
Самые же удивительные открытия, касающиеся обратной перспективы, были сделаны в самое последнее время. В 1947 г. немецкий ученый, работавший в США, Р. Лунберг, опираясь на экспериментальные данные, построил математическую теорию, из которой следовало, что для участков горизонтальной плоскости, находящихся в непосредственной близости от наблюдателя, свойства перцептивного пространства могут быть описаны как свойства риманова пространства постоянной отрицательной кривизны, т. е. как свойства пространства Лобачевского. Тогда, согласно геометрии Лобачевского, всякий прямоугольник ABCD, у которого AD является ближней к наблюдателю стороной, а ВС — дальней, отобразится в перцептивном пространстве в так называемый четырехугольник Ламберта А'В'C'D' стороны которого удовлетворяют неравенству B'C'>A'D'. Следовательно, "дальняя" сторона четырехугольника Ламберта В'С' будет больше его "ближней" стороны A'D'. Но это же и есть обратная перспектива! Древнерусская икона и геометрия Лобачевского! Поистине нет предела удивительному на перекрестках науки и искусства!
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.