Математика и искусство - [126]

Шрифт
Интервал

Другая точка зрения на истоки oбратной перспективы основана на чистом естествознании и прежде всего на закономерностях зрительного восприятия. Когда в 1966 г. Б. В. Раушенбах случае но попал в Музей древнерусского искусства имени Андрея Рублева, его порази необычный мир иконы. Но в то же время и покоробили слова экскурсовода, щедро раздававшей древнерусским живописцам ярлыки: "не умели", "не знали", "не смогли". И это мудрые, образованнейшие мастера, чьи произведения имена пережили столетия?! Раушенбах спешил назвать их "простодушными и наивными" (см. эпиграф к гл. 7). Он задумался...

20 лет спустя появилась на свет oбщая теория перспективы, в которой дре: нерусская обратная перспектива заняла свое достойное место.

23. Академик Раушенбах: космонавтика — иконография — общая теория перспектив!

Дело не в том, чтобы научиться рисовать, а в том, что бы научиться мыслить.

Стендаль

12 апреля 1961 года. Впервые в истории человечества космический корабль-спутник "Восток" с первым в мире космонавтом на борту Юрием Гагариным за 1 час 48 минут облетел земной шар и благополучно вернулся на Землю. Вслед за тем волны восхищения прокатились по Земле. Земной шар буквально содрогался от этих волн: "Первый полет человека в космос", "Утро космической эры", "Первый гражданин Вселенной",- сообщали газеты, радио, телевидение...

В это же время видавший виды caм лет ИЛ-14 спешил с космодрома Байканур к месту приземления космонавтов! Никто не знал об этом рейсе ИЛ-14, никто не знал имен летевших пассажиров: академиков, профессоров сверхзасекреченных конструкторов. Bi среди них и ведущий специалист в области управления и ориентации космическ аппаратов, доктор технических наук, профессор, впоследствии действительный член Академии наук СССР и Международной академии астронавтики Борис Викторович Раушенбах. На борту "Востока" стояли три дублирующие друг друга системы ориентации, два комплекта органов управления и аппарат ручного управления. Все системы, созданные под руководством Б. В. Раушенбаха, сработали нормально, и их творец был счастлив.

Как управлять ракетой в полете? Как делать ее полет устойчивым и целенаправленным? Эти вопросы стали актуальными в 30-е годы. Ракеты уже взлетали: и наши, и немецкие "Фау", но в воздухе они вытворяли безумные пируэты, ежесекундно грозя превратиться в чудовищный бумеранг. Не было ни теории правления, ни самих средств управления. После войны круг вопросов расширился: а как управлять спутником в космосе, в невесомости, где нет ни внешней среды, ни точки опоры? Как сориентировать космический аппарат в данном направлении? Ведь, летя по инерции, он кувыркался во всех мыслимых направлениях! Впереди снова открывалось белое поле нерешенных проблем.

Вот этим проблемам Б. В. Раушенбах посвятил свою жизнь, пройдя путь от инженера до академика. С новыми полетами в космос появлялись и новые системы, новые проблемы. Если первые три спутника еще не имели системы ориентации кувыркались в полете, как слепые котята, то ровно через два года после запуска первого спутника, 4 октября 1959 г., межпланетной автоматической станки "Луна-3" была блестяще решена задача управления ориентацией станции. "Луна-3", как известно, облетела Луну, сфотографировала ее с обратной стороны передала изображение на Землю. Так человечество впервые увидело загадочную обратную сторону своего спутника, этом были "Венеры" и "Марсы", "Востоки" и "Восходы", "Молнии" и "Горизонты", "Союзы" и "Салюты". И с каждой новой станцией, новым кораблем вырастали все новые и новые проблемы.

Работа над проблемой стыковки космических кораблей "Союз" пробудила интерес Б. В. Раушенбаха к... живописи. Откуда такие неожиданные параллели? Дело в том, что на корабле "Союз" нет переднего иллюминатора (на его месте расположен стыковочный узел). Поэтому для наблюдения во время стыковки за другим кораблем установлены специальные оптические приборы типа перископов и телекамер, которые, как известно,-дают изображение по законам геометрической оптики, т. е. в линейной перспективе. Но вот тут-то и возникает вопрос: а можно ли доверять этим изображениям? Насколько точно они передают ощущение пространства, видимого непосредственно глазом? Насколько перспектива оптическая, линейная, отличается от перспективы видимой, перцептивной? Ведь стыковка двух кораблей, происходящая на первой космической скорости, требует фантастической точности!

Посещение музея Рублева стало последней каплей в чашу "перспективных" вопросов: у Раушенбаха появилось новое увлечение — геометрия живописи.

Мы уже упоминали о существовании двух геометрических пространств: реальном и перцептивном (с. 297). Перцептивное пространство возникает в нашем сознании в результате совместной работы глаз и мозга. На первом этапе на сетчатке глаза возникает изображение реального пространства, которое подчиняется законам геометрической оптики, т. е. линейной перспективы. На втором — это изображение преобразуется в нашем сознании в результате деятельности мозга. Таким образом, линейная (ренессансная!) перспектива учитывает только работу глаза, но не учитывает работу мозга. Вот где корни излишней "фотографичности" ренессансных полотен!


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Все формулы мира

Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.