Математический аппарат инженера - [32]
Вопросы математического образования инженеров в современных условиях обсуждаются в сборнике статей видных советских математиков «Математическое образование сегодня» (М., «Знание», 1974).
Среди справочников, пожалуй, наиболее близок к современным потребностям инженера «Справочник по математике для научных работников и инженеров» Г. Корна и Т. Корн (М., «Наука», 1968). Он широко охватывает материал классических и новых разделов математики, являющихся необходимым орудием для инженеров-исследователей. Много внимания уделяется связи рассматриваемых математических вопросов с прикладными задачами. Разумеется, не нуждаются в рекомендации «Справочник по высшей математике» М.Я. Выгодского и «Справочник по математике» И.Н. Бронштейна и К.А, Семендяева, выдержавшие по несколько изданий и широко используемые инженерами и учащимися.
Глава 2
Множества
Элементами множеств могут быть самые разнообразные предметы: буквы, атомы, числа, функции, точки, углы и т.д. Отсюда с самого начала ясна чрезвычайная широта теории множеств и ее приложимость к очень многим областям знания.
Н. Н. Лузин
Одной из характерных черт современной математики и ее приложений является господство теоретико-множественной точки зрения. Язык теории множеств, включающий большое число различных понятий и связей между ними, все глубже проникает в техническую литературу. Поэтому инженер должен понимать этот язык и уметь им пользоваться.
Алгебраические операции над множествами и их свойства излагаются с применением кругов Эйлера и диаграмм Венна, а бинарные отношения иллюстрируются на матрицах и графах. Благодаря этому основные понятия теории множеств получают наглядное представление в привычной для инженера графической или табличной форме.
Центральное место в этой главе занимает теория отношений, которая оказалась простым и удобным аппаратом для самых разнообразных задач. На ее основе обобщается понятие функции, применимое не только к числовым множествам, но и к множествам объектов любой природы. Особо выделяются три типа бинарных отношений: эквивалентность, упорядоченность и толерантность, которые наиболее часто встречаются в практике.
Большое значение в математике имеют отношения, называемые законами композиции, которые ставят в соответствие паре каких-либо элементов третий элемент из одного и того же или из различных множеств. Определяя не некотором множестве один или два таких закона и наделяя их некоторыми свойствами, получаем различные алгебраические системы: группы, кольца, поля, тела и т.д. Эти и подобные им абстрактные понятия являются обобщениями самых разнообразных объектов исследования как в самой математике, так и в специальных областях науки и техники. В качестве примеров рассматриваются наиболее интересные с прикладной точки зрения алгебраические системы (группы подстановок, кольцо многочленов, тело кватернионов, поле комплексных чисел и др.).
- 85 -
Результатом далеко идущих обобщений обычного трехмерного пространства явилось понятие абстрактного пространства, которое в самом общем виде определяется как некоторое множество с заданными на нем отношением или законами композиции. Конкретизация множеств, свойств отношений и законов композиции приводит к различным типам пространств: метрическим и топологическим, линейным и евклидовым и т.д.
В заключительном параграфе настоящей главы излагаются основные понятия и методы комбинаторики. Ее основная задача состоит в исследовании расположения, упорядочения или выборки элементов конечных множеств в соответствии со специальными правилами и нахождении числа способов, которыми это может быть сделано. Комбинаторные методы находят все более широкое применение в инженерном деле, например, при решении транспортных задач, составлении расписаний, планировании производства, организации снабжения и сбыта, статистических методах контроля, составлении и декодировании шифров для передачи сообщений и т.п.
Восприятие использование абстрактного языка теории множеств и других разделов современной математики позволяют объединять и исследовать с единых позиций такие понятия и явления, которые ранее казались далекими и различными. При этом важно уметь применять к реальным явлениям те математические понятия и методы, которые наиболее близки к ним, и научиться за общими абстрактными понятиями видеть конкретные образы окружающего мира.
1. Алгебра множеств
1. Свойства операций над множествами. Операции над множествами, сформулированные в (1.2.7), как и операции над числами, обладают некоторыми свойствами (табл. 1). Эти свойства выражаются совокупностью тождеств, справедливых независимо от конкретного содержания входящих в них множеств, являющихся подмножествами некоторого универсума U.
Тождества (1а)-(3а) выражают соответственно коммутативный, ассоциативный и дистрибутивный законы для объединения, а тождества (1б)-(3б) — те же законы для пересечения. Соотношения (4а)-(7а) определяют свойства пустого множества ∅ и универсума U относительно объединения, а соотношения (4б) — (7б) — относительно пересечения.
Выражения (8а) и (8б), называемые законами идемпотентности, позволяют записывать формулы с множества без коэффициентов и показателей степени. Зависимости (9а) и (9б) представляют законы поглощения, а (10а) и (10б) — теоремы де Моргана.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.