Математический аппарат инженера - [30]

Шрифт
Интервал

)


которая получается по индукции из формулы для двух событий.

Здесь

- условная вероятность события A>i, вычисленная при условии, что произошли события A>1, A>2,..., A>i-1.

9. Объединение событий. Простая формула для вероятности появления одного из несовместных событий (6) нуждается в обобщении, если события совместны. Пусть из n равновозможных исходов событию А благоприятствуют m>A исходов, а событию B — m>B исходов. Так как множества совместных событий пересекаются, то сумма m>A + m>B, кроме исходов, благоприятствующих появлению


- 79 -


одного из событий А или В, дважды учитывает m>AB исходов, благоприятствующих одновременному появлению А и В. Поэтому из общего числа исходов n появлению событий А или В (или обоих вместе) будут благоприятствовать m>A + m>B - m>AB исходов, на основании чего имеем



Эта формула получена из каких-либо ограничений относительно характера событий А и В:

для зависимых событий

P(A ∪ B) = P(A) + P(B) -P(A)P>A(B),

для независимых событий

P(A ∪ B) = P(A) + P(B) -P(A)(B).

10. Независимость и несовместность. При использовании приведенных соотношений необходимо четко понимать смысл таких свойств событий, как независимость и несовместностью. Условиями независимости событий можно рассматривать каждое из соотношений

P(A ∩ B) = P(A) + P(B); P>A(B) = P(B)

Так, при бросании двух игральных костей вероятности событий А(дубль) и В(меньше 6 очков) равны соответственно P(A) = 6/36 = 1/6 и P(B) = 10/36 = 5/18. Одновременному появлению этих событий соответствует подмножество A ∩ B = {(1,1),(2,2)} и его вероятность P(A ∩ B) = 2/36=1/18. Так как P(A ∩ B) B≠ P(A)P(B), то рассматриваемые события являются зависимыми. С другой стороны, событие В при условии наступления события А определяется как подмножество {(1,1),(2,2)} основного множества {(1,1),(2,2), (3,3),(4,4}{(5,5),(6,6)}, и P>A(B) = 2/6 = 1/3, т.е. не совпадает с P(B)= 5/18. По соответствующим формулам имеем:

P(A ∩ B) = P(A)P>A(B) = 1/6 · 1/3 = 1/18;

P(A ∪ B) = P(A) + P(B) — P(A)P>A(B) = 1/6 + 5/18 -1/6 · 1/3 = 7/18.

Очевидно, те же результаты получим, если пример В в качестве дополнительного условия для А. Так как множество {(1,1),(1,2),


- 80 -


(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)}, соответствующее событию В, служит основным для события А, то

P>B(A) = 2/10 = 1/5,

и следовательно получаем:

P(A ∩ B) = P(B)P>B(A)= 5/18 · 1/5 = 1/18;

P(A ∪ B) = P*A) + P(B) — P(B)P>B(A) = 1/6+5/18-5/18· 1/5=7/18.

Общее условие несовместности событий выражается как

P(A ∩ B) = 0,

что соответствует A ∩ B = ∅. Так, в рассматриваемом примере A ∩ B = {(1,1),(2,2)} ≠ ∅, следовательно, события А и В совместны.

Независимые события А и В при ненулевых вероятностях P(A) и P(B) всегда совместны. Действительно, из соотношения P(A ∩ B) = P(A)(B) имеем P(A ∩ B) ≠ 0, а значит и A ∩ B ≠ ∅, что свидетельствует о совместности независимых событий. Однако совместность событий не обязательно влечет их независимость. Из условия A ∩ B ≠ ∅ при P(A ∩ B) ≠ 0 следует лишь, что P(A ∩ B) ≠ 0 и условная вероятность P>A(B) ≠ 0. Но может иметь место неравенство P>A(B) = P(B), что означает зависимость рассматриваемых совместных событий.

Зависимые события А и В при ненулевых вероятностей P(A) и P(B) могут быть как совместными, так и несовместными. В первом случае A ∩ B ≠ ∅, и поэтому условные вероятности P>A(B) и P>B(A) не равна нулю, т.е. одно из событий может наступить при условии, что произошло другое событие. Во втором случае A ∩ B = ∅, следовательно, условные вероятности зависимых и несовместных событий P>A(B) = P>B(A) = 0. Это значит, что пир наступлении события А событие В произойти уже не может, а наступлении события В не может произойти событие А. В то же время из несовместности событий (A ∩ B = ∅) следует их зависимость, что выражается равенством нулю условных вероятностей P>A(B) и P>B(A). Иначе говоря, если события А и В несовместны, то при наступлении одного из них другое произойти не может, т.е. несовместные событие не могут быть независимыми.

Несовместность совокупности событий A>1, A>2, ..., A>n, следует из их попарной несовместимости, т.е. из условия

A>i ∩ A>j = ∅ (i,j = 1,2,..., n; i ≠ j).


- 81 -


Однако полная независимость совокупности событий, вообще говоря, еще не определяется их попарной независимостью. Кроме условий

P(A>i ∩ A>j) = P(A>i)P(A>j) (i,j = 1,2,..., n; i ≠ j),

должны выполняться также аналогичные условия для любых сочетаний по 3, 4, ... , n событий. Например, для трех событий условие полной независимости выражается системой соотношений:

P(A>1 ∩ A>2) = P(A>1)P(A>2);

P(A>1 ∩ A>3) = P(A>1)P(A>3);

P(A>2 ∩ A>3) = P(A>2)P(A>3);

P(A>1 ∩ A>2 ∩ A>3) = P(A>1)P(A>2)P(A>3).


Невыполнение хотя бы одного из этих соотношений свидетельствовало бы о том, что события A>1, A>2 и A>3 в совокупности зависимы. На практике, однако, попарная независимость обычно влечет за собой и независимость в совокупности.


Задачи и упражнения



1. Какова вероятность угадать все шесть номеров (из 49) в спортлото?

2. Из урны, содержащей 8 белых и 12 черных шаров, вынимают один шар. Какова вероятность того, что он будет белым; что он будет черны?

3. Найдите на основе рассмотрения множества событий при бросании двух игральных костей (каждая кость имеет шесть равноправных граней, пронумерованных от 1 до 6) вероятность следующих событий:


Рекомендуем почитать
Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.