Математические головоломки и развлечения - [139]
Доска размером 6x6 клеток — самая большая из досок, на которых возможна ничья. Это доказал в 1960 году Роберт А. Джьюитт.
Он сумел показать, что ничья невозможна на доске размером 7x7 клеток, а поскольку все большие доски содержат подквадрат из 7x7 клеток, то ничья на них также невозможна.
При игре в КВБ на доске размером 6x6 клеток всегда можно добиться ничьей. Следуя довольно простой симметричной стратегии, второй игрок всегда может свести игру вничью. Он может в ответ на каждый ход противника ставить свою фишку на поле, расположенное симметрично вертикальной или горизонтальной оси доски, или на поле, в которое переходит при повороте на 90° вокруг центра доски клетка, занятая последней фишкой противника (во втором случае может возникнуть позиция, изображенная на рис. 230). Возможна и другая стратегия: последнюю занятую противником клетку соединить с центром доски и, продолжив отрезок прямой по другую сторону от центра, занять клетку на этой прямой, отстоящую от середины доски на то же расстояние, что и клетка противника. Все стратегии применимы к любым доскам четного порядка, а поскольку на досках, порядок которых превышает 6, ничья невозможна, эти стратегии обеспечивают победу второму игроку на всех досках четного порядка, начиная с 8. Даже при игре на доске 6x6 зеркальносимметричная стратегия (когда второй игрок «отражает» ходы первого в оси, делящей доску пополам и параллельной ее краю) заведомо обеспечивает победу, поскольку единственная позиция, при которой достигается ничья, не обладает зеркальной симметрией.
Симметричная стратегия неприменима к доскам нечетного порядка из-за наличия у них центральной клетки. Поскольку относительно оптимальной стратегии для игры на досках нечетного порядка мы ничего не знаем, лучше всего ограничиваться доской седьмого порядка. Игра на такой доске не может закончиться вничью, но до сих пор не известно, кто из игроков — первый или второй — одержит победу, если обе стороны будут играть рационально.
В 1963 году была составлена программа для игры в КВБ для компьютера ИБМ-1620. Компьютер мог играть, делая первый или второй ход, на досках порядка от 4 до 10. Если он должен был делать первый ход, то выбирал клетку случайным образом. В последующих ходах придерживался зеркальносимметричнои стратегии, но если очередная клетка «достраивала» квадрат (то есть была четвертой вершиной квадрата), то производил случайный поиск свободной клетки до тех пор, пока не обнаруживал «безопасного» поля.
Для всех квадратных досок порядка п число различных квадратов, которые можно построить из четырех клеток, равно
Вывод этой формулы, а также формулы для прямоугольных досок содержится в книге Г. Лэнгмэна «Математика в играх».[72]
Насколько известно, возможность размещения фишек, не образующих треугольников, на треугольных досках не исследовалась.
2. Тепловоз может переставить вагоны А и В и вернуться на прежнее место за шестнадцать операций:
1) тепловоз едет вправо и сцепляется с вагоном А;
2) тащит А вниз;
3) заталкивает А на левую ветку и отцепляется от него;
4) движется вправо и проходит стрелку;
5) двигаясь по часовой стрелке, описывает круг и проходит тоннель;
6) толкает вагон В влево; оба вагона прицепляют к тепловозу;
7) тащит вагоны А и В вправо;
8) заталкивает А и В наверх; вагон А отцепляют от В;
9) тепловоз тащит В вниз;
10) толкает В влево, вагон В отцепляют от тепловоза;
11) тепловоз проходит сквозь тоннель, описывая круг против часовой стрелки;
12) заталкивает вагон А вниз;
13) едет влево и сцепляется с В;
14) тащит вагон В вправо;
15) заталкивает В наверх и отцепляется от него;
16) уезжает влево, на то место, где находился до начала маневров.
Точно так же можно действовать и в том случае, когда тепловоз не может тащить вагоны, прицепленные к нему спереди, если в самом начале тепловоз обращен к вагонам задней стенкой.
Следует заметить, что если даже нижний путь, ведущий влево, убрать, то задача все же будет иметь решение, хотя понадобится совершить еще две операции (полное решение будет, таким образом, состоять из восемнадцати операций). Может быть, читатели сами догадаются, как это сделать?
3. Самое интересное в задаче о рекламных щитах заключается в том, что для ответа на нее не нужно знать скорость машины. Пусть х — число щитов, промелькнувших в течение одной минуты. За час машина проедет мимо 60х щитов. Скорость машины, как известно из условия задачи, равна 10х миль/ч. Пройдя расстояние в 10х миль, машина проедет мимо 60х рекламных щитов, следовательно, на расстоянии 1 мили она проедет мимо 60х/10х, или 6 щитов. Это означает, что расстояние между щитами равно 1/6 мили, или 880 футам.
4. Если куб разрезать пополам плоскостью, проходящей через середины шести его ребер так, как показано на рис. 231, то поперечное сечение будет иметь вид правильного шестиугольника.
Рис. 231Сечение куба, имеющее форму правильного шестиугольника.
Если длина ребра куба составляет полдюйма, то сторона этого правильного шестиугольника равна
дюйма.
Чтобы сечение тора имело вид двух пересекающихся окружностей, секущая плоскость должна проходить через его центр и касаться тора сверху и снизу (рис. 232).
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.