Математические головоломки и развлечения - [127]

Шрифт
Интервал

С этими словами он протянул мне листок бумаги, на котором означились буквы:

TLVEHEDINSAGMELRLIENATGOVRAR

GIANESTYOFOFIFFOSHHRAVEMEVSO

— Эти буквы взяты из одной фразы, опубликованной в Scientific American пять лет назад, — пояснил он. — Джилберт написал каждую букву на отдельной карточке, а карточки сложил в колоду так, что всю фразу можно было прочитать, двигаясь сверху вниз.

Разделив колоду на две части и поменяв их местами, он записал новую последовательность, в которой расположились буквы. По его наблюдениям, на расшифровку фразы в среднем уходит около получаса. Дело в том, что, сняв карты, мы лишь незначительно меняем информацию, содержащуюся в исходной последовательности карт, а избыточность различных буквенных комбинаций в английском языке настолько велика, что вероятность составить фразу, отличную от первоначальной, крайне мала (в своей работе Джилберт даже приводит точное значение этой вероятности).

Я загремел кубиками льда в своем стакане.

— Прежде чем наполнить стаканы, — сказал Виктор, — я хочу показать тебе один остроумный фокус с предсказанием. Нам потребуется твой стакан и девять игральных карт. — И он разложил на столе девять карт со значениями от единицы до девятки в виде известного магического квадрата 3x3 (рис. 216).



Рис. 216Карты и стакан, приготовленные для фокуса с предсказанием.


Все карты были червовой масти, только в центре лежала пятерка пик. Из кармана Виктор достал конверт и положил его рядом с магическим квадратом.

— Я хочу, чтобы ты поставил свой стакан на любую из этих девяти карт, — продолжал он, — но сначала я должен сообщить тебе, что в этом конверте лежит библиотечная карточка, на которой записаны кое-какие инструкции. Составляя их, я исходил из предположения о том, какую карту ты выберешь и как ты будешь переставлять свой стакан потом, когда карты нужно будет выбирать случайным образом. Если мои предположения верны, ты закончишь на карте в центре квадрата.

Он постучал пальцем по пятерке пик.

— А теперь можешь поставить стакан на любую из девяти карт, в том числе и на пятерку пик.

Я поставил стакан на двойку червей.

— Так я и думал, — засмеялся Виктор. Он вытащил из конверта карточку, и я прочитал следующие инструкции:

1. Отбрось семерку.

2. Сделай семь ходов и отбрось восьмерку.

3. Сделай четыре хода и отбрось двойку.

4. Сделай шесть ходов и отбрось четверку.

5. Сделай пять ходов и отбрось девятку.

6. Сделай два хода и отбрось тройку.

7. Сделай один ход и отбрось шестерку.

8. Сделай семь ходов и отбрось туза.

«Ход» состоит в передвижении стакана на соседнюю карту по вертикали или горизонтали, но не по диагонали. Тщательно следуя полученным инструкциям, я старался делать все ходы как можно более случайным образом.

К моему величайшему удивлению, стакан ни разу не оказался на той карте, которую я должен был отбросить, а после того, как я изъял восемь карт, мой стакан, как и предсказывал Виктор, остался стоять на пятерке пик!

— Ты совсем закрутил мне голову, — признался я. — А какую бы карту нужно было отбросить, если бы я поставил стакан на семерку пик?

— Должен признаться, — ответил Виктор, — что в этом фокусе есть немного жульничества, не имеющего отношения к математике.

Расположение карт в виде магического квадрата не имеет никакого отношения к делу. Существенно лишь, где лежат карты: карты, лежащие на нечетных местах — в углах и в центре, — образуют одно множество, карты, лежащие на четных местах, образуют множество противоположной четности. Увидев, что ты поставил стакан на карту из нечетного множества, я дал тебе те инструкции, которые ты видел. Если бы ты поставил стакан на карту из четного множества, то я бы, прежде чем вынимать карточку с инструкциями, перевернул конверт.

Он перевернул библиотечную карточку. На ее обратной стороне оказался второй перечень инструкций:

1. Отбрось шестерку.

2. Сделай четыре хода и отбрось двойку.

3. Сделай семь ходов и отбрось туза.

4. Сделай три хода и отбрось четверку.

5. Сделай один ход и отбрось семерку.

6. Сделай два хода и отбрось девятку.

7. Сделай пять ходов и отбрось восьмерку.

8. Сделай три хода и отбрось тройку.

— И ты считаешь, что эти два свода инструкций — один для случая, когда я ставлю стакан на четное место, другой — на нечетное, — всегда приведут к пятерке пик?

Виктор кивнул.

— Почему бы тебе не напечатать обе стороны карточки с инструкциями в журнале? Пусть читатели поломают голову над тем, как получается этот фокус.

Наполнив еще раз стаканы, Виктор сказал:

— Принцип четности используется во многих математических фокусах. Сейчас я покажу тебе один из них. У тебя создастся впечатление, что я обладаю даром ясновидения.

Он протянул мне карандаш и чистый лист бумаги.

— Сейчас я повернусь к тебе спиной, а ты нарисуешь самую затейливую замкнутую кривую с любым числом самопересечений (постарайся, чтобы их было побольше). Следи только за тем, чтобы ни в одной точке кривая не пересекала себя больше одного раза.

Он повернулся лицом к стене и оставался сидеть так, пока я рисовал кривую (рис. 217).



Рис. 217Произвольно начерченная замкнутая кривая со случайным образом обозначенными точками самопересечения для фокуса с «ясновидением».


Еще от автора Мартин Гарднер
Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Библейские игры

Мог ли Авраам отказаться принести в жертву Исаака, как Бог приказал ему сделать, и при этом избежать Божьего гнева за отказ? Что бы случилось, если бы Ева не сорвала яблоко с древа познания добра и зла? Что было бы, откажись Адам попробовать это яблоко? Автор исследует мотивы поведения тех или иных библейских персонажей, анализирует рациональность их действий и обсуждает мораль их поведения, а также возможные варианты исходов тех или иных библейских сюжетов в зависимости от того, как их герои поступили бы в той или иной ситуации.


Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.