Математические головоломки и развлечения - [106]
Кто смотрит и кто не смотрит телевизор?
* * *
Профессор Априле прислал две фотографии, изображенные на рис. 179.
Рис. 179Дополнительный ряд отверстий у нижнего края этих карточек позволяет безошибочно сортировать их.
Дополнительный ряд отверстий и прорезей у нижнего края каждой карточки позволяет быстро и безошибочно сортировать карты. Булавки, воткнутые в отверстия нижнего ряда, удерживают карты, остающиеся после изъятия части колоды с помощью булавок, воткнутых в отверстия верхнего ряда.
Ответ
Логическая задача решается с помощью перфокарт следующим образом.
Пусть А, В, С, D и Е означают: Абнер, Верил, Клео, Дейл и Эллсуорт. Каждое утверждение считается истинным, если соответствующее лицо смотрит телевизор, в противном случае оно ложно.
Условие 1 позволяет отбросить все карты с комбинацией АВ>-; условие 2 —карты с комбинацией D>-E>-; условие 3 исключает комбинации ВС и В>-С>-; условие 4 исключает комбинации C>-D и CD>-; условие 5 исключает комбинации А>-Е и DE>-. Остается единственная карта с комбинацией A>-B>-CDE>-. Отсюда мы заключаем, что Клео и Дейл смотрят телепередачу, а остальные члены семьи не смотрят ее.
Глава 36. ТЕОРИЯ ГРУПП И КОСЫ
Понятие «группы» — одно из основных понятий современной алгебры, охватывающее общие свойства самых разнообразных объектов различной природы и служащее неоценимым средством исследования в физике. Джеймс Р. Ньюмен сравнивал его с улыбкой Чеширского Кота:[57] когда Чеширский Кот (алгебра в том виде, как ее обычно преподают в школе) исчезает, остается только его абстрактная улыбка. Но улыбка подразумевает нечто веселое, занимательное. Может быть, теория групп покажется нам менее загадочной, если мы не будем воспринимать ее слишком серьезно.
Трое программистов — Эймз, Бейкер и Кумбс — хотят решить, кому из них платить за пиво. Разумеется, они могли бы бросить монетку, но предпочитают случайный выбор, основанный на игре, которая состоит в блуждании по некоторой сети линий. На листе бумаги проведены три вертикальные линии (назовем их основой).
Один из программистов, держа лист так, чтобы его друзья не видели, что он делает, обозначает эти линии наугад буквами А, В и С (рис. 180, а).
Рис. 180Блуждание по линиям «основы» и «утка».
Верхний край листа он загибает так, чтобы буквы не были видны. Второй программист наугад проводит ряд горизонтальных линий (назовем их утком), каждая из которых соединяет какие-нибудь две вертикальные линии (рис. 180, б). Третий программист добавляет еще несколько горизонтальный линий, а у одной из вертикальных линий снизу ставит букву X (рис. 180,в).
Лист бумаги разворачивают. Эймз ставит свой палец в верхнюю точку линии А и начинает обводить ее сверху вниз. Дойдя до начальной или конечной точки линии утка (если точка пересечения вертикальной линии с линией утка лежит внутри горизонтального отрезка, Эймз ее пропускает и следует дальше), он поворачивает и проходит всю эту линию до другого ее конца, после чего снова поворачивает и продолжает спускаться вниз до тех пор, пока снова не встретит начальную или конечную точку другой линии утка. Так продолжается, пока он не достигнет нижней точки какой-нибудь вертикальной прямой. Если его путь (на рис. 180,г он показан пунктирной линией) заканчивается не в точке X, то за пиво платит не он. Затем точно таким же способом по сети прямых путешествуют Бейкер и Кумбс. Путь Бейкера заканчивается в точке X, поэтому за пиво приходится платить ему. Каким бы ни было число линий основы (вертикальных прямых), независимо от того, как проведены линии утка (горизонтальные прямые), пути игроков всегда заканчиваются на различных прямых, и никакие два маршрута никогда не приводят к одной и той же линии.
При более подробном рассмотрении этой игры выясняется, что в основе ее лежит одна из простейших групп — так называемая группа перестановок трех элементов. Что же такое группа? Это некая абстрактная структура, состоящая из множества элементов (а, Ь, с….), относительно природы которых не делается никаких предположений, с единственной бинарной операцией (ее мы обозначим символом о), сопоставляющей каждой паре элементов множества некоторый третий элемент. Чтобы такая структура составляла группу, должны выполняться следующие четыре условия:
1. Каждой паре элементов множества операция ставит в соответствие некоторый элемент того же множества. Это свойство носит название «замкнутости» множества относительно операции.
2. Операция подчиняется «ассоциативному закону»:
(а о Ь) о с = а о (b о с).
3. Существует элемент е (называемый «единицей»), такой, что
а о е = е о а = а.
4. Для каждого элемента а существует обратный элемент а', такой, что
а о а' = а' о а = е.
Если помимо только что названных четырех условий операция подчиняется еще и коммутативному закону:
а о Ь = b о a,
то группа называется коммутативной, или абелевой.
Целые числа — положительные, отрицательные и нуль — образуют группу относительно сложения (это наиболее известный пример группы). Множество целых чисел замкнуто относительно сложения (прибавить 2 к 3, а затем к 4 — то же самое, что прибавить 2 к сумме чисел 3 и 4); «единицей» группы служит 0, а элементом, обратным (или, как говорят еще, противоположным) целому положительному числу, — то же число, взятое со знаком минус. Группа целых чисел относительно сложения — абелева (2 + 3 = 3 + 2). Если в качестве операции выбрать деление, то целые числа не будут образовывать группы: поделив 5 на 2, мы получим 2,5, а это число не принадлежит множеству целых чисел.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.