Математические головоломки и развлечения - [104]
Как получается этот фокус? Каждое задуманное число задает особую, неповторяющуюся комбинацию карт. Эта комбинация эквивалентна двоичной записи чисел. Складывая верхние числа, стоящие на возвращенных карточках, вы просто находите сумму тех степеней двойки, которые входят в двоичное разложение задуманного числа с коэффициентом 1. Чтобы еще сильнее запутать зрителей, можно воспользоваться разноцветными карточками. Вы уходите в противоположный конец комнаты и просите зрителя положить карточки с задуманным им числом в один карман, а остальные карточки — в другой. Разумеется, вы должны видеть отобранные карточки и помнить, какая степень двойки соответствует каждому цвету. Тот же фокус можно показывать и по-другому. Разложите пять карточек (на этот раз их не нужно раскрашивать) в ряд на столе.
Встав в другом конце комнаты, попросите кого-нибудь перевернуть карточки с задуманным им числом. Так как карточки расположены в порядке возрастания верхних чисел, вам остается лишь сложить верхние числа на перевернутых карточках и получить ответ.
Не мене интересные фокусы можно показать с помощью набора перфокарт, изображенного на рис. 178.
Рис. 178Набор перфокарт, позволяющий прочесть новогоднее поздравление, отгадать задуманное число и решить некоторые логические задачи.
Они также основаны на использовании двоичной системы. Перфокарты можно изготовить из обычных карточек, используемых в библиотечных каталогах, картотеках и т. п. Отверстия должны быть чуть больше диаметра карандаша. Удобно сначала прорезать пять отверстий в одной карточке, а затем использовать ее как шаблон для того, чтобы наметить отверстия на других карточках. Если у вас нет дырокола, прорезание отверстий ножницами можно ускорить, если брать по три карточки и прорезать в них отверстия одновременно. Срезанный угол позволяет следить за тем, чтобы перфокарты не переворачивались. Проделав в каждой карточке по пять отверстий, прорежьте промежуток, отделяющий некоторые отверстия от края, так, как показано на рисунке. Отверстия, доходящие до края перфокарт, соответствуют цифре 1, остальные отверстия соответствуют цифре 0.
Таким образом, каждой перфокарте можно сопоставить некоторое двоичное число от 0 до 31, но карточки нарисованы в беспорядке.
С помощью этих перфокарт можно показать три необычных фокуса. И хотя изготовить карты довольно хлопотно, все члены вашей семьи с удовольствием будут забавляться ими.
Первый фокус заключается в быстрой сортировке перфокарт: нужно расположить их так, чтобы соответствующие перфорации числа последовательно возрастали от 0 до 31.
Перетасуйте перфокарты, как игральные, и сложите их колодой.
Продев карандаш в отверстие Е, немного приподнимите его. Половина карт окажется надетой на карандаш, а половина останется в колоде. Встряхните карандаш, чтобы те карты, которые должны остаться в колоде, не оказались вынутыми, и, подняв карандаш, разделите колоду на две части. Снимите с карандаша надетые на него карты и положите их поверх остальной колоды. Затем по очереди проделайте ту же процедуру, продевая карандаш в каждое из отверстий по порядку справа налево. Дойдя до пятого отверстия, вы с удивлением обнаружите, что двоичные числа, соответствующие перфорации карт, расположились по порядку от 0 до 31, а перелистав карточки, прочтете новогоднее поздравление.
Во втором фокусе перфокарты играют роль вычислительного устройства, позволяющего отгадывать числа, выписанные на карточках для «чтения мыслей». Продев карандаш в отверстие Е, спросим, встречается ли задуманное число на карточке, самое верхнее число которой равно 1. При утвердительном ответе нужно поднять карандаш и отбросить все карты, оказавшиеся надетыми на него. При отрицательном — отбросить карты, оставшиеся в колоде.
И в том и в другом случае у вас останется 16 карт. Спросите у вашего зрителя, находится ли задуманное им число на карточке с верхним числом 2, и повторите только что проделанные операции, продев карандаш в отверстие D. После того как ваш карандаш побывает во всех отверстиях (а вы спросите, находится ли задуманное число на соответствующей карточке, и в зависимости от ответа оставите или отбросите надетые на карандаш перфокарты), у вас останется одна-единственная перфокарта. Пробитые на ней отверстия будут образовывать двоичную запись задуманного зрителем числа. Если хотите, на каждой карточке можно заранее напечатать соответствующее десятичное число. Тогда вам не надо будет каждый раз переводить числа из двоичной системы в десятичную.
В третьем фокусе перфокарты служат своего рода логической машиной, идея которой была впервые предложена английским экономистом и логиком Уильямом С. Джевонсом. В «логическом абаке», как назвал свое устройство Джевонс, используются деревянные дощечки с воткнутыми в них стальными булавками, за эти булавки дощечки можно вынимать из специальной рамки. Однако манипулировать с перфокартами ничуть не хуже, а изготовить их намного проще. Джевонс изобрел также и сложное механическое устройство, названное им «логическим пианино». Перфокарты позволяют исполнять на «логическом пианино» любое произведение.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.