Магия чисел. Математическая мысль от Пифагора до наших дней - [53]

Шрифт
Интервал

Наиболее значимой деталью для всей пифагорейской науки было четвертое из треугольных чисел 1, 3, 6, 10, 15, 21… Да, 10 или декада. Но при этом и треугольник, а потому – священный тетрасис. Поскольку, согласно Пифагору, все числа находятся внутри декад, становится ясно, почему десять было совершенством для остальных чисел и, согласно Платону, исконным образцом для вселенной. Становится понятен и краеугольный камень обобщений Платона, что мир создан из треугольников. Это будет подтверждено, когда 4 элемента произойдут от 4-го члена последовательности треугольных чисел, конкретно из треугольных декад. Неудивительно, что братство пифагорейцев превратило 10, действительно 4-й треугольник, в свою клятву и свой наиболее жестко охраняемый секрет. Тот, кто дал клятву на тетрасисе и нарушил ее, предавался анафеме, поскольку он предал космос, частью которого был сам, греки бы сказали пропорцией или дробью.

Хотя может показаться занимательным распутывать всю замысловатую нумерологию (в изложении Платона, в частности в «Тимее») создания и структуры материального мира, но нет необходимости это делать, чтобы понять суть идеи пифагорейской химии, физики и космогонии. Вполне вероятно, окажется достаточно уже представленных материалов, чтобы оценить ее возможности в столь типичном отрывке: «Итак, то, что было создано, обязательно телесно, а также видимо и осязаемо. Ничего не видно там, где нет огня, и осязаемое не телесно без земли. По этой причине божественное в начале создания сотворило тело мироздания из огня и земли. Но две вещи не могут существовать без третьей, у них должно быть связующее звено. Ныне прекрасная связь – это та, которая наиболее полно объединяет связанные вещи. Пропорции хорошо подобраны для поддержания этой связи. Всякий раз среди трех чисел, какой бы телесной или иной другой она ни оказалась, не имеет значения, потому что среднее значение есть последнее условие, поскольку на первом плане – среднее значение, а когда значение есть наипервейшее условие, то и последнее условие приобретает среднее значение, и оно становится и первым, и последним, а первое и последнее становятся значимыми, все вещи по необходимости приходят к одному знаменателю, поскольку они едины и стремятся слиться воедино».

Нет сомнений, что это список с утерянной «библии» Пифагора от Филолая, поскольку это чистейший пифагореизм. Чтобы понять, о чем идет речь, следует воспользоваться помощью перевода с запутанного языка на более простой эквивалент в терминах простейшей арифметики. В действительности отрывок относится к банальным конкретным свойствам банальных дробей. До некоторой степени запутанная арифметика нам понятна. Но она была совсем не так понятна пифагорейцам V века до н. э. или даже греческим математикам времен Платона, никто из которых не владел умением толково записывать дроби. Смешно, но для гимназиста XVIII века этот невразумительный отрывок яснее, чем для выпускника колледжа наших дней.

За исключением старомодных учебников, редко встретишь «соотношения» и «пропорции» в современных научных трудах. «Соотношение» числа m к числу n записывается как m/n или

. Если соотношение m: n равно соотношению r: s, в античные времена записали бы m:: n:: r: s; а в наши дни
 или m/n = r/s. Даже использование старой манеры записи понять много легче, чем то, что использовали пифагорейцы и их греческие последователи. Они не имели столь выразительных математических символов, как у нас, а все описывали словами, как в предыдущем отрывке у Платона. «Существенными деталями являются «пропорция» и «среднее значение».

Четыре числа, скажем m, n, r, s, связаны «пропорцией», где первое соотносится со вторым, как третье с четвертым, или на языке дробей, где дробь m: n равна дроби r: s. Следовательно, m, n, r, s состоят «в отношении», если m: n:: r: s в нашем простом примере,

, есть «условия» «пропорции».

Возникает множество специальных случаев. Такие, как средние значения n, r, равны и, следовательно, r = n и m: n:: n: s, которые были очень важны для пифагорейцев, а также для греческих геометров. В этом случае n именовалось «средним геометрическим значением» между экстремальными точками n, s «среднего пропорционального значения» для n, s. Переводя все на понятный язык дробей, имеем

, и, таким образом, как известно ученику начальной школы («освобождаемся от дробей»), m × s = n × n, в элементарной алгебре ms = n>2.

Следовательно, «среднее геометрическое значение» (n) двух чисел (m, s) есть корень квадратный (

) от их результата (ms). Арифметика в тексте Платона означала именно это. Из «пропорции»
 незамедлительно следует, что
 (если обе дроби равны, результатом деления будет 1, поскольку каждая из них также равна). Это как раз то, что он говорит: m: n:: n: s, – из чего следует, что n: m:: s: n, где «среднее значение» n в первоначальной «пропорции» становится как первым, так и последним вторым числом, а первое и последнее m, s в первоначальной пропорции становятся «средними значениями» в «пропорции», вытекающей из первоначальной. Таким образом, элементарная арифметика у Платона в порядке.


Рекомендуем почитать
Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Путеводитель для влюбленных в математику

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.