Магия чисел. Математическая мысль от Пифагора до наших дней - [51]
На следующем этапе появляется новый грандиозный посыл в нумерологии космоса. Линия, о которой идет речь, ограничена, или «предельна», точками. Базовый элемент (точка, 1) всего космоса появился как ограничивающий элемент для вторичного элемента (линии, 2). Это предполагает, что вторичный элемент должен являться ограничивающим или предельным элементом для элемента третьего класса в строении космоса, а именно треугольника. Имеем: треугольник ограничен 3 линиями. Получив на основании замечательного предположения громадной важности закон, применимый к любому пространству, Пифагор в предвкушении демонстрации отважно выдвинул гипотезу, что телесное пространство, пространство материальных тел, есть число 4. Затем, как добросовестный ученый, протестировал свое предсказание на фактах, которые ему казались таковыми. Если бы они подтвердили его правоту, он бы стал самым счастливым человеком на земле.
Простейшим из всех геометрических тел правильной формы является тетраэдр, у которого есть 4 точки, это его вершины, и 4 равносторонних треугольника в качестве граней. Великий принцип ограничения элементами следующего нижнего уровня применим. Но здесь много чего, очень много. Телесное пространство, только что доказанное, есть число 4, являющееся справедливостью по сути, не имеет оснований для сомнений. 4 треугольные субповерхности, ограничивающие и лимитирующие тетраэдр, сами по себе ограничены и лимитированы 6 линиями, являющимися гранями тела, а число 6 совершенно. Более того, 4 грани тетраэдра ограничивают 6 линий, ограничивающие 4 треугольника, ограничивающие тело. Ограниченный подобным образом во всех мыслимых направлениях тетраэдр, и потому еще и телесное пространство, является изначально мужским со своими числами 2, числами 4 и своим совершенным числом 6.
Сущее в данном случае выглядит следующим образом: 1 – точка, 2 – линия, 3 – плоскость, а 4 – тело. Но что-то уже было похожее? 1, 2, 3, 4 есть тетрада, их союз, следовательно, весь космос есть число самой декады: 1 + 2 + 3 + 4 = 10. Поскольку все материальные вещи существуют только в космосе, они тоже есть числа, а тетрады создают их всех. Пифагор был самым счастливым человеком на земле.
Продолжая изучать «все сущее» учителя, в мгновение оказываемся у «категорий», упомянутых Аристотелем в официальном обвинении: «…они сделали вывод на этом основании, что элементы чисел идентичны элементам категорий». Следующей проблемой стала необходимость выделить суть из тетрады 1, 2, 3, 4. Возможно, наиболее привлекательное описание релевантной нумерологии содержится в диалогах Платона. Не придавая значения тому, что сам Платон воспринимал всю эту пифагорейскую физику и химию настолько серьезно, насколько он, возможно, хотел бы убедить нас, нам остается мимоходом отметить, где он все это имел возможность достать.
Около середины V века до н. э. философ Филолай, эрудированный ученик Пифагора, ставший известным около 450 года до н. э., собрал существенный архив поучений учителя. К тому времени братство самораспустилось уже почти полвека тому назад. Как будет видно в следующей главе, распад пифагорейцев как организованного секретного сообщества стал результатом мести Килона. И хотя братство прекратило существовать как активная политическая сила, некоторые из них, кто знавал учителя живым, продолжали топтать землю в интеллектуальных колониях, первоначально основанных материнской организацией в Кротоне. Эти стареющие живые свидетели одной политической чистки, сменявшей другую, оказались в положении схожем с положением интеллектуальных евреев в Европе во времена нацистского режима.
Подозреваемые во всех видах вредительства, к которым они были не причастны, обвиняемые в преступлениях против правящих тиранов, при этом не имея намерения бороться в сложившихся безнадежных обстоятельствах, измученные пифагорейцы прибегали к уловкам, дабы сохранить свои знания, даже если им самим и суждено было погибнуть. Притворная хитрость их счастливых лет стала практической необходимостью, если они не хотели, чтобы учения погибли вместе с братством. Впоследствии всего несколько письменных произведений по пифагорейской науке и философии были найдены, и эти немногие труды передавались из рук в руки под самой торжественной клятвой оберегать секрет. Архив Филолая, как утверждают, стал наиболее полным и наиболее точным среди прочих. Даже в ранние годы Платона, когда активная враждебность к пифагорейской секте осталась в далеком прошлом, пифагорейскую «библию» Филолая было очень трудно достать. Как полагают, Платон достал копию у Архита из Таренто. Архит был восторженным ученым-пифагорейцем. Распознав родственный ум в молодом, но подающем надежды Платоне, Архит великодушно подарил ему бесценную копию пифагорейской «библии». (Один источник говорит, что Платон дал высокую цену за книгу, но по некоторым причинам это звучит неправдоподобно.) За исключением нескольких фрагментов весьма сомнительного авторства, сам труд больше не существует, но письменные упоминания и ссылки на его текст сохранились у греческих историков.
Утрата конспекта Филолая компенсируется бесспорно старательным исследованием, предпринятым со всей глубиной ума Платона, особенно в части нумерологии, представленной, например, в отдельных частях его «Тимея». При отборе для этой книги примеров пифагорейской химии и астрономии много чего было взято из диалогов Платона, к которым любое заинтересованное лицо может обратиться за дальнейшими деталями. Многое, хотя и с критических позиций, дал Аристотель в своих комментариях к науке пифагорейцев. Но по разумной, пользующейся доверием традиции позднейшие греческие историки и философы основывали свои исследования на «библии» Филолая.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.