Магия чисел. Математическая мысль от Пифагора до наших дней - [27]

Шрифт
Интервал

К тому же имел место нелепый эпизод с высеченной собакой. Хозяин имел право наказать свою собаку. Собака была его собственностью, и он имел полное право делать с ней все, что заблагорассудится по любой причине или без таковой. Но этот ненормальный фантазер Пифагор устроил настоящий сыр-бор, когда увидел одного из уважаемых горожан, избивающего палкой собаку. «Прекратите бить собаку! – закричал он как сумасшедший. – В собачьих завываниях я слышу голос своего друга, умершего в Мемфисе двенадцать лет назад. За такой же грех, который ты сейчас творишь, он стал собакой у жестокого хозяина. В следующий раз при повороте Колеса жизни он сможет стать хозяином, а ты – собакой. Может случиться, что он проявит к тебе больше милосердия, чем ты к нему. Только так сможет он избежать Колеса жизни. Именем Аполлона, моего отца, остановись, или я буду вынужден наложить на тебя десятикратное проклятие тетрактиса».

Итак, теперь его отцом стал Аполлон, не так ли? Когда это еле держащийся на ногах старый Мнесарх, готовый сойти в могилу в любой момент, вдруг превратился в одного из бессмертных богов? Этот обманщик Пифагор оказался хуже, чем просто досадное недоразумение, он был дурее козла с разбитой головой. Какое право имеет он ходить тут и насылать на людей заморские проклятия? Если хозяин собаки умрет, они знают, что делать с человеком, который его убил. Но сейчас ему придется вещать свой вздор ветру.

Нет информации, что ответил или подумал Пифагор о том, как его приняли сограждане. В отличие от другого известного учителя он не стал выражать свое разочарование в раздражении. Если они не пришли послушать его, он все равно донесет свое послание до них. Он покинул пустой амфитеатр и завел себе ученика, всего одного, очень бедного. При таких обстоятельствах его можно было бы простить, если бы он произнес: «Пусть тот, кто нечист, так и останется нечистым». Но Пифагор оставался настоящим философом, он знал, что одним из проявлений любви к мудрости является передача мудрости другим. И в тот момент он более всего желал разделить свою страсть к геометрии как дедуктивной науке.

Продвинувшись далеко вперед по сравнению с Фалесом, Пифагор открыл и доказал множество теорем, на основании которых построен начальный курс геометрии в школе. Не забывая, что часть теорем, приписываемых Пифагору, могли быть открыты его учениками, мы все же утверждаем, опираясь на авторитет греческих историков математики, что Пифагор оставил геометрию в таком состоянии, в котором она благополучно пребывала еще около двух тысяч лет. Ему воздают должное за то, что он признал необходимость вначале давать определение, и необходимость четких формулировок постулатов (аксиом), из которых выстраиваются дедуктивные умозаключения. Более того, в своих доказательствах он старался противодействовать ложным записям дальнейших допущений в дополнение к уже упомянутым постулатам.

Это очень похоже на игру: взять, например, несколько предметов; для их перемещения разрешены только определенного типа строго предписанные правила, каковы же возможные конфигурации из предметов в честной игре? Предметами являются определения и постулаты, правила перемещения подчиняются формальной логике, возможная конфигурация – это результат дедукции на основе постулатов средствами логики, тогда на выходе будет теорема по геометрии.

Любые математические аргументы, полностью формализованные, подвергаются обработке по данной схеме: определения и постулаты, дедукция, теоремы. Четкость греческой техники (но без положенного в ее основу логического обоснования в качестве одной из многих дедуктивных техник) вернулась, когда в 1637 году Декарт создал аналитическую геометрию, где все возможности алгебры и математического анализа были применены к геометрии. Эффект по силе и простоте оказался ошеломляющим, и непосредственно греческая модель вышла из употребления. Но лежащая в ее основе философия выжила.

Чтобы его бедняк ученик не тратил зря время на «игру», Пифагор платил ему монетку за каждую доказанную теорему. Это вполне устраивало бедного молодого человека. Сидя в тенечке, внимательно наблюдая за действиями учителя и запоминая сказанное им, он зарабатывал за час больше, чем заработал бы за целый день, не разгибая спины на солнцепеке. Но Пифагор – ученик скаредного Фалеса – не мог спускать деньги на ветер. По мере того как горка монет начала увеличиваться до размеров приличной суммы, ученик, сам того не желая, активно заинтересовался геометрией и стал подгонять своего учителя. Азартный грек в Пифагоре увидел в этом свой шанс и включился в игру. Поведав ученику, что он сам абсолютно бедный человек, Пифагор предложил теперь ученику платить учителю монетку за каждую новую теорему. К моменту, когда молодой человек смог выучить столько геометрии, сколько смог удержать в голове, и собрался вернуться к тяжелой работе, Пифагор отыграл назад все свои деньги и остался при всех своих знаниях по геометрии, как и в начале игры.

Следует отметить, что конец этой истории едва ли соответствует традиционной строгой честности ученого. Должно быть, это один из последних мифов, созданных с целью усилить ощущение, что невозможно уменьшить неосязаемое путем вычитания неосязаемого или посредством распределения неосязаемого между другими.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.