Магия чисел. Математическая мысль от Пифагора до наших дней - [17]

Шрифт
Интервал

Наиболее длительный эффект того затмения сказался на умах древних греков. Фалес был первым из мудрейших людей Греции, его критик Солон был еще одним из семи бессмертных. «Мудрость» для наследников дела Фалеса включала в себя тогдашние науку, инженерию, технологию, арифметику, геометрию и философию, причем последнюю в том смысле, в котором мы и сейчас воспринимаем ее. «Философия» для греческих философов никогда не замыкалась на высокие мысли о низменной жизни, но относилась ко всем знаниям, которыми философ был в состоянии овладеть.

Разделение между философией и наукой произошло значительно позже, когда научный метод Галилея и Ньютона столь существенно поднял планку проверяемых знаний, что «натуральная философия», физическая наука и математическая астрономия, покинула своих досточтимых прародителей и в течение трех веков развивалась самостоятельно. Привлекаемая древней магией чисел, натуральная философия в ХХ веке, как показалось, была готова вернуться к родным пенатам VI века до н. э. Призрачная фигура Пифагора замаячила сквозь завесу времен, готовая приветствовать блудную дочь с прощающей улыбкой.

Рассмотрим «философию» Фалеса с позиций современного научного метода, прежде чем осмысливать его имеющий непреходящее значение вклад в развитие математики. Довольно странно для столь практичного ума, но Фалес попытался охватить мироздание обобщающей теорией. «Всё есть вода», – объявил он своим насмерть перепуганным согражданам. Более того, он уточнил сказанное: швырните все, что вам нравится, как можно дальше, и вы увидите, что у вас ничего не осталось, кроме воды на ладонях.

Это была первая из всеобъемлющих обобщающих теорий, предложенных греческими и иными философами ошеломленному и не знавшему, чему верить, человечеству в качестве окончательного суммирования всего, что нашлось в космосе, времени и вечности. Почитателям Фалеса остается только верить, что сам он не воспринимал собственную теорию так же серьезно, как его греческие потомки, которые посчитали, что необходимо доказать ложность его теории в деталях.

Очевидно, что корни метафизической воды Фалеса уходят в Вавилонию. Мысль о мокрой структуре «всего» не могла казаться слишком нелепой людям, преуспевшим в строительстве своих городов из зажаренной на солнце глины на равнине плоской, как пол, и зажатой между двумя полноводными реками, которые каждые два года выходили из берегов. «Всё есть вода», – звучит больше похоже на раздраженное выражение неудовольствия какой-нибудь вавилонянки-домохозяйки, нежели на разумный вклад философа в копилку знаний всего человечества. Фразу тиражировали с небольшими расхождениями в акцентах на протяжении двадцати шести веков. В XIX веке н. э., когда паровоз своими гудками затмил все остальное, «всё» стало материей и энергией, или энергетическим эфиром. В самом начале XX века легкий шум динамо-машин и стук телеграфных ключей сделал «всё» электричеством. В более разумные 1930-е годы, когда относительность рассеяла материю, энергию, эфир и электричество на уравнения пространства-времени, «всё» стало математикой.

Прежде чем сказать Фалесу-человеку слова прощания и перейти к величайшей из его работ, вспомним одну из самых человечных историй о нем, которая пережила столетия. Как-то ночью, поглощенный созерцанием звезд,

Фалес величаво шагнул в колодец. Услышав плеск воды и последовавший, возможно, почти в ту же секунду испуганный крик «Всё есть вода!», слуга-фракиец вытащил философа из колодца, слегка поддразнивая, что тому не следовало бы засматриваться на происходящее в небе, если не замечает, что находится у его ног.

В других пересказах колодец превращается в простую канаву, а непочтительный слуга – в старую женщину. Но вверимся лучше авторитету Платона, у которого прислуга была молода и красива. Поверим, что это была она и что Фалес, когда она выловила мудреца, вознаградил ее должным образом. Из всех неизвестных нам женщин, живших в VI веке до н. э., я хотел бы узнать имя той фракийской служанки.

Глава 7

Не много, но достаточно

Небольшой по количеству, но насыщенный бесчисленными возможностями вклад Фалеса в математику оказался достаточен, чтобы зародилась наука о числах, просуществовавшая с VI века до н. э. до наших дней. Внедрение дедуктивного метода в элементарную геометрию уже было упомянуто, и некоторое время спустя мы рассмотрим метод в деталях.

Другим имевшим решающее значение нововведением стало намеренное абстрагирование или идеализация информации, полученной в результате наблюдений, для установления чистой идеи. Это, до некоторой степени пугающее описание очень простого процесса, базового для математики, науки и философии, будет рассмотрено прежде всего. Это необходимо для более полного осознания того, что принято называть знаниями или мудростью как в древности, так и теперь.

Абстрактный контрпример, как он подается в элементарной геометрии, может показать главные аспекты значительно четче, чем описание всего процесса. В 1890-х годах один своеобразный педагог выпустил учебник по элементарной геометрии, основанный на новых принципах. Его достойная цель состояла в том, чтобы сделать геометрию не только понятной для начинающих, но и доступной, как чтение газеты. Он преуспел настолько, что никто совсем ничего не мог понять. Новизна его подхода состояла в следующем: прямые линии имеют определенную и измеряемую толщину. Это, как уверял он, чистый факт каждодневного бытия. Даже самый отсталый наблюдатель в состоянии увидеть это, настаивал он, раз об этом указано. «Прямая линия», проведенная куском мела на доске, отмечал он, иногда столь же широка, что и человеческий палец, а самая дешевая линза превратит едва видимые «прямые» царапины на оконном стекле в корявые желоба.


Рекомендуем почитать
Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.