Магия чисел. Математическая мысль от Пифагора до наших дней - [18]

Шрифт
Интервал

Проблемы возникли, когда буквоеды-подростки начали шумно требовать рассказать им, сколько раз нужно расщеплять волос, чтобы получился пучок правильных линий. Подходит ли для этих целей конский волос, или нужно воспользоваться волосом из девичьего хвоста? И далее в том же духе, пока несчастный автор новой геометрии не оказался на грани от потери рассудка. Доведенный до крайности, уже пересекая порог сумасшедшего дома, этот человек, обманутый в своих надеждах, продолжал кричать, что все линии существуют только в уме геометров и что он бросил вызов всем математикам в мире, несогласным с ним. Своим дерзким вызовом ортодоксальности новый геометр задекларировал факт, который ни один математик, кроме, возможно, тех, кто придерживался реалистичных позиций в духе Платона, не стал бы оспаривать. Фалес, как предполагают, был все-таки первым из тех, кто придумал нечто абсолютно противоположное тому, чему собирался учить революционно настроенный педагог. След мела, царапины, расщепленные волосы и все иные бесчисленные, поддающиеся чувственному восприятию «прямые линии» обозначает некая абстрактная прямая линия – «длина без ширины», как самая простая идеализация их всех. Эта прямая линия геометров не существует в материальном мире. Это чистая абстракция, плод воображения или, если кому-то нравится, мысль вселенского разума. И нет необходимости выискивать недостатки типа какой ширины прямая линия, поскольку словосочетание «ширина линии» больше не имеет значения.

Этот процесс очищения повседневного опыта и абстрагирования от него, то есть выделения общей концепции, позволил создать математику, механику и теоретическую физику. Такой подход вдохновил Платона на его возвышенную мистическую философию. Геометрия линий не имеет привязки к той или иной «линии» из так называемого чувственного опыта, она связана исключительно с конкретными определениями и постулатами касательно идей или гениальных провидений, несущих пользу науке и математике, и действительна для всех типов линий, детерминированных данными определениями и постулатами.

Нынешние геометры знают, что не все может быть детерминировано как составное из простейших составляющих. Но от какого-то неразложимого минимума надо вести начало. Начало для прямых линий находится в следующих простейших абстракциях чувственного опыта: «Две прямые линии пересекаются в одной, и только в одной точке. Через две точки можно провести одну прямую линию, и только одну». В этих постулатах ни «точка», ни «прямая линия» не имеют дальнейшего уточнения или объяснения. Это два базовых, не имеющих дальнейшего деления элемента, на которых построена вся геометрия.

Любой разумный человек может видеть в «точке» и «прямой линии» общеизвестные понятия, которые, как ему представляется, он понимает интуитивно. Но каждое из этих интуитивных ощущений должно оставаться на заднем плане. Оно не должно навязываться геометрии. Подобный запрет не имеет целью встать на пути поиска мысли при формулировании теорем. Начиная с двенадцатилетнего школьника и заканчивая семидесятилетним ученым в тиши кабинета, всякий, посвятивший себя геометрии, нуждается в интуиции и пользуется ею. Только после того, как интуиция и воображение полностью исчерпают себя, они могут быть отброшены, уступив место логике.

В теоретической астрономии и физических науках процедура точно такая же. Земля, которую мы населяем и знаем благодаря нашим ощущениям, – не идеальная планета, которой она представляется в механике небесных тел. Она покрыта глубокими океанами и испещрена горными системами. Эта планета, которую учитывают в расчетах возмущений Солнечной системы, является как безразмерной частицей, наделенной массой и положением, так и гладкой без особых примет сферой, слегка покачивающейся относительно своих полюсов. И хотя солнце и планеты Солнечной системы идеализируются подобным образом, орбиты комет рассчитываются с такой точностью, что возврат перигелия кометы Галлея в 1910 году после ее отсутствия в течение примерно 75 лет был предсказан с погрешностью только в 3,03 дня – около 1 из 9125.

В настоящее время все сказанное настолько хорошо знакомо, что нас можно извинить, если мы посчитаем это явно граничащим с трюизмом. Но всякий, кому и дальнейшее покажется очевидным, является либо гением, либо просто равнодушным человеком. Просто чудесно, что идеальный мир математиков или ученых-теоретиков должен время от времени предсказывать существование непредвиденных событий «реального» мира.

Приведу известный пример такого предсказания. Положение планеты Нептун за пределами возможностей человеческого глаза было предсказано (в 1846 году) путем математических расчетов на основе закона всемирного тяготения Ньютона, и телескоп обнаружил планету очень близко к расчетному месту. Или более свежий пример (1927). Современная физика и математика на основе квантовой теории предположила существование двух видов молекул водорода, ортоводорода и параводорода, о которых химики даже не догадывались. Более того, их соотношение (>3/>4 и >1/>4) в «водороде» совпало с расчетными. Как можно объяснить подобные предсказания?


Рекомендуем почитать
Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.