Магия чисел. Математическая мысль от Пифагора до наших дней - [19]

Шрифт
Интервал

Объяснений было представлено много, даже слишком много, чтобы предположить, что хоть одно окажется убедительным. Только самое позднее из них (1930) следует рассмотреть в данной работе, как наиболее уместное относительно магии чисел, благодаря древней истории которой и появилось на свет. Человеческий разум должен предполагать результат любого научного эксперимента до того, как опыт будет произведен, потому что можно осознавать и рассуждать последовательно только при одном условии, математическом подходе, и, более того, математические истины бессмертны. Заявлено слишком жестко, но не слишком пристрастно, как в большинстве революционных научных кредо ученых последних трех столетий. Нечто подобное уже произносилось, к этому возвращались много раз и в самых разных формах, с VI века до н. э. и вплоть до наших дней.

Некоторые математики чувствуют необходимость подчинения неизбежности. Возникает ощущение, будто их открытия и находки ожидали их в неизвестном, но вполне узнаваемом будущем. Рационалист сказал бы, что математик проектирует себя в иллюзорное время своего собственного изобретения. Будущее, в которое, как ему представляется, он проникает, на самом деле есть его собственные настоящие абстракции и доказательства – плоти и духа математики. Постоянство и универсальность математики основываются на ее абстрактности, очевидной необходимости или «обреченности» как сопутствующей строгости формальной логики.

Всеми, кто верит, что математика и логика есть плоды человеческого сознания, и необходимость и универсальность воспринимаются лишь как преходящие признаки. Сторонники теории о том, что числа были скорее найдены, чем изобретены, обнаруживают в математике бесспорное доказательство существования высшего и вечного разума, наполняющего вселенную. Первые чтут в математике гибкость и способность меняться, последние видят в математике откровение постоянства в бесконечности пространства, все несовершенство которого вносится лишь неадекватностью человеческого восприятия. По мере продвижения в направлении более ясного осознания бесконечности несовершенство пропадет, и математика засияет ярче, как безупречное олицетворение вечной истины.

Первые признаки того, что в VI веке до н. э. появление подобного учения было вполне разумно и возможно, видны на примере полудюжины простых утверждений о прямых линиях и окружностях; и, как гласят предания, Фалес некоторые из них даже доказал. Если прямая линия проходит через центр окружности, она делит окружность на две равные во всех отношениях части.

Или, например, если две стороны треугольника равны, то углы, противоположные равным сторонам, тоже равны. Эти два утверждения подтверждаются при начертании соответствующих фигур, и точно так же очевидна правота другого утверждения: если две прямые линии пересекаются, противоположные углы в точке пересечения попарно равны. Просто внимательно взглянув на чертеж, видим «истину» данного утверждения в геометрии. А если еще немного поразмышляем, то «увидим», что данные выводы не проистекают из каких-либо чисел, которые можно было бы «притянуть» к этому, но, по-видимому, сохраняют справедливость по отношению к любой окружности, любому равнобедренному треугольнику, любой паре пересекающихся прямых линий, которые только в состоянии представить человек. И это означает, что в своей области эти «утверждения» универсальны. Почему? Кто-то скажет, что это вопрос терминологии. Другие найдут утешение в утверждении, что «универсальность» абстрактных линий – это проявление высшего разума.

Четвертое утверждение практически равнозначно: если четырехугольник вписан в окружность, каждая из его диагоналей проходит через центр окружности. Этот вывод, надо признать, не производит сильного впечатления. Но, поданный в иной равнозначной формулировке, он становится, по признанию многих, самой красивой теоремой элементарной геометрии: угол, вписанный в полуокружность, есть прямой угол. Инвариантность, неизменность угла, вне зависимости от места вершины угла на полуокружности, восхищала Данте.

Каждое из приведенных четырех утверждений становится интуитивно очевидным, что явствует в процессе исследования простой фигуры, вроде тех, что ребенок играючи способен нарисовать на поверхности. Все четыре могли быть известны задолго до VI века до н. э., когда впервые в истории их внимательно рассмотрели, но не глазами безучастного ребенка, а пристальным взглядом мудрого человека.

Подобно многим, видевшим справедливость данных утверждений, Фалес также полагал, что очевидность эта интуитивная в смысле видимой «истины». Далее, вполне вероятно, он стал сомневаться в неизбежности столь простых истин в геометрии. Что мы подразумеваем, когда говорим: утверждение о фигуре, составленной из прямых линий, справедливо? Если Фалес и не так формулировал вопрос самому себе или никак его не формулировал, дальнейшее его поведение свидетельствует, что он все-таки сомневался. О действиях Фалеса нам придется судить по записям греческих историков, составивших эти записи много позже того времени, когда Фалеса уже не волновали проблемы прямых линий и окружностей. Историки немногословны, вплоть до неясности, но важно, что именно Фалес ввел абстракцию и доказательства в изучение линий как прямых, так и изогнутых. Доказательство придало значимость справедливости утверждений, как только оно появилось в геометрии. И позволило Платону и его ученикам вообразить, будто они дали смысл доказательству.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.