Магия чисел. Математическая мысль от Пифагора до наших дней - [15]
Добавив не допускающую возражений зависимость, чтобы увязать свое умозаключение с конкретным миром, Фалес вернулся к абстрактному и быстро перешел к своей неуязвимой цепи выкладок. Суммарного обзора его основных выводов и главных теорем здесь будет достаточно. «Оливковое масло есть эквивалент денег. Масло получают из зрелых олив, пропуская их через прессы, принадлежащие фермерам. Беспомощные фермеры нуждались в деньгах в ту весну, как они всегда нуждаются в них между двумя урожаями. По этой причине они расстались бы со своими прессами за один процент от их стоимости. Чтобы оставить фермеров без капли масла (которое есть эквивалент денег), на следующую осень необходимо овладеть всеми прессами. Чтобы уложиться в сумму, которая у меня есть, при покупке прессов необходимо навязать каждому продавцу условие секретности, убедив его в том, что он умнее своих соседей, чьи прессы он сможет арендовать за просто так. Если не считать их взаимовыручки при пользовании прессами, фермеры – устойчивые индивидуалисты не имели представления о благополучии других. Поэтому я буду путешествовать как король, учиться или не учиться в свое удовольствие, чему пожелаю и где того пожелаю». История и предания утверждают, что Фалес провел несколько лет в Египте и Месопотамии, изучая арифметику, геометрию и философию. Ни египтяне, ни вавилоняне не смогли научить его чему-либо в области финансов.
Не следует забывать, что этот пионер математики и философии известен нам только из легенд и ссылок на его учения более поздними математиками и философами. Не сохранилось ни современных ему свидетельств о его жизни, ни записей его высказываний, и вполне вероятно, что мы имеем абсурдно ложное представление о Фалесе как человеке. Но любой человек в науке или математике, который читал (или писал) некролог о новопреставленном коллеге, знает, что официальная история жизни известного человека нередко более грешит лестью и искажает представление о судьбе и характере, чем объемное изображение личности из анекдота, пусть даже далеко не всегда и во всем правдивого. Преданный или сатирически настроенный ученик известной личности одной-единственной фразой может порой увековечить великого человека и представить его грядущим поколениям таким, каков он есть, словно жука в янтаре. Так могло случиться и с Фалесом, и с Пифагором, ни один из которых не мог похвастаться биографией, которая устроила бы как доктринера, так и придирчивого грамотея. Эти непроверенные легенды, забальзамировавшие учителей Античности, по меньшей мере демонстрируют нам, что современники думали о них. А это нисколько не менее важно для понимания, чем знание о том, как, где и о чем эти великие люди читали свои лекции, на основе любых документальных свидетельств.
Другая классическая легенда о Фалесе также представляет интерес для повествования, поскольку она демонстрирует, что дедуктивное умозаключение не является исключительной прерогативой человечества. В течение нескольких лет Фалес вел крайне прибыльную торговлю солью, перевозимой караванами мулов. Так вот мулы, как утверждают люди, имевшие счастье общаться с ними, относятся к числу наиболее разумных животных, когда-либо созданных дьяволом. Одного из мулов Фалеса легко отнести к числу гениев. Однажды, преодолевая вброд ручей, этот супермул поскользнулся на камне и упал в воду, к несчастью погрузив в воду весь тюк с солью. При следующей переправе он нарочно улегся в воду и повалялся в ней. Он явно сообразил, что груз после первого падения полегчал. Эта уловка повторялась до тех пор, пока вся соль не растворилась. Затем мул, рассуждавший в высшей степени логично, перестал опускаться в воду. Фалес нашел способ прекратить эти слишком умные проделки, заменив тюк соли сухим тряпьем и пыльными губками. После этого мул опять опустился в воду, но только один раз.
Очевидно, эта история демонстрирует все базисные элементы как индукции (умозаключение и обобщение на основе повторяющегося опыта), так и дедукции. Человек, который сумел придумать способ обхитрить сообразительного мула, вполне мог бы стать прикладным ученым, готовым для изобретения дедуктивного метода и закладки основ математики. Что бы изобрел мул, если бы он был наделен разумной речью, осталось за пределами человеческого воображения.
Все более ранние опыты Фалеса в плане умозаключений тесно переплетены с трезвым практическим расчетом. Они также имеют в своей основе нечто более полезное для математика: способность исследовать очевидное со всех сторон и разглядеть все, что не столь явственно при обычном осмотре. Качество его размышлений отличало его от современников. Так должно быть, иначе он не побеждал бы их, когда они по глупости вступали с ним в схватку умов. Так, к примеру, случилось и при встрече с Солоном (639?—569 до н. э.), в которой Фалес проявил себя более квалифицированным юристом, чем официальный законодатель всей Греции.
По воле судьбы и искушенной логики Фалес всю жизнь оставался холостяком. Имеющий обыкновение вмешиваться не в свои дела, Солон внушил себе, что гражданский долг велит ему публично упрекнуть Фалеса за холостую жизнь и невнесение своей доли вклада в защиту государства в виде сына-солдата. Фалес смиренно принял упрек и пообещал подумать над этим. И подумал. Спустя несколько дней Солону передали в присутствии Фалеса, что его сын убит. Это подстроил сам Фалес. Правитель позабыл о государственных делах. Этого было вполне достаточно, и Фалес покаялся, что ложь была стратегической. «Теперь вы видите, – указал он, – что сами вы не в состоянии смириться с подобной потерей, а от меня хотите, чтобы я прошел через это. Где последовательность?»
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.