Когда прямые искривляются. Неевклидовы геометрии - [8]

Шрифт
Интервал

«Если возможно существование пространств с другими измерениями, то, скорее всего, Бог создал бы их, ибо его творения заключают в себе все величие и разнообразие, на которое они способны».

Геометриями, которые предсказал Кант, являются известные в наше время многомерные неевклидовы геометрии.

В формальном смысле евклидова геометрия определена в первых шести книгах «Начал», а неевклидовы геометрии получаются путем отказа от пятого постулата.

В формулировке Плейфера этот отказ означает две возможности: либо отрицать уникальность параллельной прямой, либо отрицать ее существование. Это может быть выражено следующими альтернативными утверждениями.

1. В плоскости через точку Р, не лежащую на данной прямой l, проходит более одной прямой, параллельной данной.

2. В плоскости через точку Р, не лежащую на данной прямой l, не проходит ни одна прямая, параллельная данной.



* * *

ИММАНУИЛ КАНТ (1724–1804)

Знаменитый немецкий философ Иммануил Кант получил строгое образование, при котором латинскому языку и религии уделялось больше внимания, чем математике и естественным наукам. И только в университете он по-настоящему занялся физикой и математикой. Но когда умер его отец, Кант был вынужден оставить учебу и работать репетитором, чтобы прокормить себя. В 1755 г. благодаря помощи друга он продолжил образование и получил докторскую степень. Кант в конечном счете стал преподавателем, работая в университетах в течение 15 лет, читая лекции по истории, естественным наукам и математике, а также по философии. Кант считается одним из самых ярких мыслителей современной Европы. С самого начала его теории оказывали огромное влияние на интеллигенцию и до сих пор являются основой современной философии, которая постоянно ссылается на него. Идеи Канта нашли отражение во многих дисциплинах: в философии, праве, этике, логике… Вместе с Платоном, Аристотелем и Декартом Кант является одним из основоположников западной философской мысли, отцом современной философии.


* * *

Чтобы в полной мере понять эти формулировки, нам в первую очередь необходимо выйти за рамки нашего восприятия того, чем являются параллельные линии. Новая геометрия может быть построена таким способом: мы сохраним все постулаты Евклида, но только заменим пятый постулат его альтернативой. Такая геометрия позволяет получать логичные результаты и не имеет внутренних противоречий. Первая такая геометрия, так называемая гиперболическая геометрия, была предложена Николаем Лобачевским (1792–1856) и Яношем Бойяи (1802–1860). Другую геометрию, так называемую эллиптическую геометрию, сформулировал Бернхард Риман (1826–1866).

Развитие неевклидовых геометрий проходило в два этапа: сначала были попытки доказать пятый постулат Евклида, а потом появились новые геометрии с альтернативным пятым постулатом, которые сосуществовали с евклидовой геометрией.

Такой подход предполагает существенные изменения в нашем восприятии реальности. Например, пятый постулат Евклида можно рассматривать в формулировке о сумме углов треугольника и сформулировать альтернативные постулаты. Сумма трех внутренних углов любого треугольника равна 180° — но только в мире Евклида, где параллельные линии можно продолжать до бесконечности и пространство не искривлено. А если бы Евклид побывал в бесконечности и увидел, что там произошло с параллельными линиями? А вдруг они бы пересеклись? Это бы значило, что пространство искривлено, а сумма углов треугольника больше 180°, как если бы треугольник был нарисован на поверхности апельсина. Аналогично в гиперболической геометрии, где параллельные линии неумолимо расходятся, сумма углов треугольника меньше 180°.

Евклидова геометрия содержит основные понятия любой геометрии, такие как точки, прямые и плоскости, но эти понятия в других геометриях необходимо пересмотреть. В новой геометрии прямой линией будет называться любая линия, которая является кратчайшим расстоянием между двумя точками, а плоскостью будет такая поверхность, которая обладает следующим свойством: если две точки на прямой принадлежат этой поверхности, то все другие точки на этой прямой также будут принадлежать этой поверхности.

Эти идеи действительны во всех геометриях и характеризуют новый подход к восприятию форм. Неевклидовы прямые линии могут оказаться искривленными, а в так называемой сферической геометрии сфера считается плоскостью и большие окружности на ее поверхности являются прямыми линиями. Обе геометрии имеют общую терминологию, потому что и там, и там прямая линия является самой простой линией, а плоскость — самой простой поверхностью.

Как же мы можем быть уверены в том, что две прямые параллельны? Нам нужно продолжить их в бесконечность и убедиться, что они никогда не пересекутся. Человеческий разум владеет абстрактным понятием прямой линии, имеющей только длину, но не ширину. Можно представить себе две линии, которые никогда не пересекаются и всегда находятся на одинаковом расстоянии друг от друга. Все это можно представить, но нельзя доказать экспериментально. В конце концов, евклидова геометрия является такой же абстрактной идеей, как и все остальные.


Еще от автора Жуан Гомес
Математики, шпионы и хакеры. Кодирование и криптография

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.