Камень, ножницы, теорема. Фон Нейман. Теория игр. - [11]

Шрифт
Интервал

Несмотря на то что первые понятия множеств были выведены еще Бернардом Больцано (1781-1848), создателем этой теории является Георг Кантор (1845-1918). Можно сказать, что она родилась в 1874 году в работе Кантора, опубликованной в престижном «Журнале Крелля» под названием Über eine Eigenschaft des Ibegriffes aller reellen algebraischen Zahlen («Об одном свойстве совокупности всех действительных алгебраических чисел»).

Впервые аксиомы для теории множеств вывел немецкий математик и логик Готлоб Фреге (1848-1925), который хотел придать ей логическую структуру. Эта серия аксиом должна была не только обеспечить правильность операций с множествами, но и неким образом, явно или нет, выявить само определение множества. Так или иначе, эта система аксиом просуществовала очень недолго, так как в теории был открыт коварный парадокс.


ПАРАДОКС РАССЕЛА

В 1903 году Бертран Рассел доказал, что в теории множеств Кантора таится противоречие, и поставил под вопрос само определение множества. Кантор понял это, когда столкнулся с тем, что множество всех множеств не может существовать, так как множество никогда не может являться частью самого себя. Предположим, что существует два типа множеств, — те, что принадлежат сами себе, и те, которые не принадлежат. Назовем, например, множество всех существующих столов М. Пусть m — произвольный стол. Следовательно, m принадлежит М:

m ϵ М

Разумеется, множество всех столов не является столом. Следовательно, мы можем утверждать, что

М┐ϵ М.

(здесь ┐ϵ  заменяет отсутствующий символ "перечеркнутое  ϵ ")

Таким образом, это пример множества, не принадлежащего самому себе. Теперь рассмотрим множество T, состоящее из всех множеств, которые содержат более трех членов. Если мы возьмем множество р, образованное парой одинаковых элементов, то получим, что

р┐ϵ Т.

У множества T, разумеется, больше трех элементов — их бесконечное количество, поэтому

T┐ϵ T.

Следовательно, это пример множества, принадлежащего самому себе.

Тогда Рассел вводит следующее множество R:

«R состоит из множеств, которые не являются элементами самих себя».

Исходя из предыдущих примеров, мы имеем:

M┐ϵ R и T┐ϵ R.

В этом случае вопрос Рассела звучит так:

R┐ϵ R?

Если ответ да, то R не может быть элементом R, так как содержит само себя и, следовательно, не принадлежит само себе. Если же ответ нет, то множество R не принадлежит само себе. Таким образом, в любом случае мы получаем элемент, который одновременно и принадлежит, и не принадлежит некоему множеству, что является парадоксом, или, выражаясь языком логики, противоречием. Проблема, лежащая в его основе, заключалась в том, что в рамках теории Кантора ничто не запрещало образовывать такие множества, как множества Рассела. Следовательно, надо было создать такую аксиоматику, которая не оставила бы места множествам такого типа.


МЕТОД ФОН НЕЙМАНА

Немецкий логик и математик Эрнст Цермело (1871-1953) сформулировал семь аксиом, с помощью которых не только хотел придать логическую основательность теории множеств, но и избежать таких спорных ситуаций, как в парадоксе Рассела. Для этого Цермело дал определение основным понятиям и их отношениям. За аксиому принималось существование самого множества, пустого множества, объединения и пересечения множеств, а также части множества. Таким образом гарантировалось точное существование множеств, на которых можно было основываться и которые позволяли доказать фундаментальные для анализа теоремы. В то же время из игры исключались ненадежные множества, которые могли привести к парадоксам.

Бертран Рассел, один из основателей аналитической философии. Портрет маслом кисти Роджера Фрая, 1923 год.

В Геттингенском университете фон Нейман (фотография 1940-х годов) познакомился с Давидом Гильбертом, чьи труды оказали на него большое влияние.

Медная гравюра, на которой изображено здание Гёттингенского университета и библиотеки. Около 1815 года.


Позже теория множеств Цермело была дополнена и расширена Абрахамом Галеви Френкелем (1891-1965). Так появилась система аксиом, ставшая известной как аксиоматика Цермело — Френкеля. Пользуясь сравнением Анри Пуанкаре (1854-1912), теперь овцы были окружены забором, который защищал их от волков, оставшихся снаружи, но при этом было неизвестно, не спрятался ли какой-нибудь волк внутри. Другими словами, система Цермело — Френкеля позволяла создавать все необходимые для математики множества, но не исключала вероятности существования множеств, принадлежащих самим себе, — затаившихся внутри ограды волков.


Существует такое бесконечное множество А, которое не является слишком большим.

Джон фон Нейман


Фон Нейман предложил для решения этой проблемы два способа, которые дополняли друг друга: аксиому регулярности и понятие класса. Обе эти модели он изложил в 1928 году в своей докторской диссертации Die Automatisierung der Mengenlehere {«Аксиоматизация теории множеств»), которую защитил в Будапештском университете.

При помощи аксиомы регулярности и следуя аксиомам Цермело фон Нейман строил множества снизу вверх, так, что если одно множество принадлежало другому, то оно обязательно было первым в последовательности. При этом исключалась вероятность того, что множество принадлежит само себе. Важно подчеркнуть, что метод, использованный фон Нейманом для демонстрации этого результата, стал фундаментальным для многих доказательств теории множеств и используется по сей день.


Рекомендуем почитать
Жизнь одного химика. Воспоминания. Том 2

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Моя бульварная жизнь

Аннотация от автораЭто только кажется, что на работе мы одни, а дома совершенно другие. То, чем мы занимаемся целыми днями — меняет нас кардинально, и самое страшное — незаметно.Работа в «желтой» прессе — не исключение. Сначала ты привыкаешь к цинизму и пошлости, потом они начинают выгрызать душу и мозг. И сколько бы ты не оправдывал себя тем что это бизнес, и ты просто зарабатываешь деньги, — все вранье и обман. Только чтобы понять это — тоже нужны и время, и мужество.Моя книжка — об этом. Пять лет руководить самой скандальной в стране газетой было интересно, но и страшно: на моих глазах некоторые коллеги превращались в неопознанных зверушек, и даже монстров, но большинство не выдерживали — уходили.


Скобелев: исторический портрет

Эта книга воссоздает образ великого патриота России, выдающегося полководца, политика и общественного деятеля Михаила Дмитриевича Скобелева. На основе многолетнего изучения документов, исторической литературы автор выстраивает свою оригинальную концепцию личности легендарного «белого генерала».Научно достоверная по информации и в то же время лишенная «ученой» сухости изложения, книга В.Масальского станет прекрасным подарком всем, кто хочет знать историю своего Отечества.


Подводники атакуют

В книге рассказывается о героических боевых делах матросов, старшин и офицеров экипажей советских подводных лодок, их дерзком, решительном и искусном использовании торпедного и минного оружия против немецко-фашистских кораблей и судов на Севере, Балтийском и Черном морях в годы Великой Отечественной войны. Сборник составляют фрагменты из книг выдающихся советских подводников — командиров подводных лодок Героев Советского Союза Грешилова М. В., Иосселиани Я. К., Старикова В. Г., Травкина И. В., Фисановича И.


Жизнь-поиск

Встретив незнакомый термин или желая детально разобраться в сути дела, обращайтесь за разъяснениями в сетевую энциклопедию токарного дела.Б.Ф. Данилов, «Рабочие умельцы»Б.Ф. Данилов, «Алмазы и люди».


Интервью с Уильямом Берроузом

Уильям Берроуз — каким он был и каким себя видел. Король и классик англоязычной альтернативной прозы — о себе, своем творчестве и своей жизни. Что вдохновляло его? Секс, политика, вечная «тень смерти», нависшая над каждым из нас? Или… что-то еще? Какие «мифы о Берроузе» правдивы, какие есть выдумка журналистов, а какие создатель сюрреалистической мифологии XX века сложил о себе сам? И… зачем? Перед вами — книга, в которой на эти и многие другие вопросы отвечает сам Уильям Берроуз — человек, который был способен рассказать о себе много большее, чем его кто-нибудь смел спросить.