Камень, ножницы, теорема. Фон Нейман. Теория игр. - [10]

Шрифт
Интервал

Открытка 1916 года, на которой изображена улица на территории Эрлангенского университета.


Если речь идет об относительно небольших расстояниях, евклидова и неевклидова геометрии практически эквивалентны. Однако если рассматривать расстояния в астрономии или в некоторых системах современной физики (теории относительности или теории распространения волн), неевклидовы геометрии оказываются более точным инструментом.

В свете этого ученые заключили, что гиперболическая геометрия — один из видов неевклидовой — не менее обоснована, чем евклидова; другими словами, если в гиперболической геометрии и есть противоречия, то они есть и в геометрии Евклида. Последующее развитие теоретической физики показало, что евклидова геометрия необязательно наиболее соответствует «реальности».

Появление неевклидовых систем стало важным этапом не только в развитии самой геометрии. Речь шла о том, чтобы зайти за священную ограду непреложных истин, содержащихся в аксиомах, и сделать предметом изучения само внутреннее обоснование этих аксиом. Геометрия стала детонатором глубокого кризиса, который в итоге поразил один из столпов всей математической науки — теорию множеств.


ТЕОРИЯ МНОЖЕСТВ

Теория множеств имеет большое значение для математики: являясь, в сущности, очень простой, она позволяет дать определения таким понятиям, как упорядоченная пара, соотношение, функция, разбиение множества, порядок, натуральные числа, рациональные, вещественные, комплексные числа, структура группы, кольцо, тело, векторное пространство и так далее,— список можно продолжать очень долго. Само же понятие множества — одно из основных в математике. Сложно найти хотя бы одну ее область, которая не была бы основана на нем, явно или не очень явно. Можно даже утверждать, что все математическое здание стоит на краеугольном камне теории множеств, которой пользуются математики, логики и, в меньшей степени, те, кто имеет дело с программированием.

Первая сложность в этой теории — само определение множества, но если ее преодолеть, все остальное работает прекрасно. Сформулировать же это определение, не используя само слово «множество» или его синонимы (совокупность, общность, последовательность и другие), очень трудно. Одна из лучших формулировок, в которой нет никаких синонимов (по крайней мере на первый взгляд), была предложена британским ученым Бертраном Расселом (1872-1970):

«Множество суть одновременное рассмотрение различных элементов».

Это очень интересное определение, так как в нем множество представляется как направление мысли, и это означает, что речь идет действительно о базовом понятии. Представим, что мы пришли на прием, где никого не знаем, и начинаем скучать. Чтобы убить время, мы посмотрим на обувь, которую носят гости, и попробуем ее классифицировать по очень простому принципу «нравится — не нравится». Тем самым мы установим некое соотношение в точно определенном множестве: вся обувь на приеме. Перемена направления мысли состоит именно в том, чтобы рассмотреть одновременно ряд объектов, ограничить наше внимание только ими, сконцентрироваться только на них. Именно так мы и получили «множество обуви».

Существует два особых и теоретически неизбежных множества — пустое и универсальное. Пустое множество обозначается знаком 0 и определяется как множество, не имеющее ни одного элемента. С философской точки зрения это очень противоречивое понятие, и в свое время у него было много противников. Ведь раз множество не содержит ни одного элемента, значит оно состоит из ничего, а поскольку «ничто» не существует, то не существует и пустого множества. Универсальное множество, напротив, имеет слишком много элементов, то есть оно просто-напросто слишком большое. В большинстве научных работ его обозначают буквой U. Определение универсального множества не такое четкое, как пустого. Считается, что оно включает в себя все множества, которые мы только можем рассмотреть. Поскольку в пустом множестве ничего нет, в U возникает соблазн включить все. Это означало бы, что U — множество всех возможных множеств, что не совсем правильно — не с метафизической точки зрения, на которую математики не обратили бы внимания, а с точки зрения внутренней логики самого понятия множества. Поэтому для универсального множества ставят условные ограничения. В приведенном выше примере, когда скучающий гость рассматривает обувь всех приглашенных на прием, мы можем считать универсальным множеством U «всю обувь, которая есть на приеме». Но для нас также удобно расширить это множество до всей обуви, произведенной в стране, если, например, мы рассматриваем определенные марки. Или мы легко могли бы принять за универсальное множество «всю обувь мира». Главное — множество должно быть достаточно большим, чтобы нам было удобно оперировать членами внутри него. Разумеется, если мы будем следовать такому алгоритму, то в наших универсальных множествах в итоге всегда будет бесконечное количество элементов. Неудивительно, что история теории множеств тесно связана с понятием бесконечности, в частности с понятием актуальной бесконечности и необходимостью создавать математические объекты с бесконечным количеством элементов.


Рекомендуем почитать
Русская книга о Марке Шагале. Том 2

Это издание подводит итог многолетних разысканий о Марке Шагале с целью собрать весь известный материал (печатный, архивный, иллюстративный), относящийся к российским годам жизни художника и его связям с Россией. Книга не только обобщает большой объем предшествующих исследований и публикаций, но и вводит в научный оборот значительный корпус новых документов, позволяющих прояснить важные факты и обстоятельства шагаловской биографии. Таковы, к примеру, сведения о родословии и семье художника, свод документов о его деятельности на посту комиссара по делам искусств в революционном Витебске, дипломатическая переписка по поводу его визита в Москву и Ленинград в 1973 году, и в особой мере его обширная переписка с русскоязычными корреспондентами.


Дуэли Лермонтова. Дуэльный кодекс де Шатовильяра

Настоящие материалы подготовлены в связи с 200-летней годовщиной рождения великого русского поэта М. Ю. Лермонтова, которая празднуется в 2014 году. Условно книгу можно разделить на две части: первая часть содержит описание дуэлей Лермонтова, а вторая – краткие пояснения к впервые издаваемому на русском языке Дуэльному кодексу де Шатовильяра.


Скворцов-Степанов

Книга рассказывает о жизненном пути И. И. Скворцова-Степанова — одного из видных деятелей партии, друга и соратника В. И. Ленина, члена ЦК партии, ответственного редактора газеты «Известия». И. И. Скворцов-Степанов был блестящим публицистом и видным ученым-марксистом, автором известных исторических, экономических и философских исследований, переводчиком многих произведений К. Маркса и Ф. Энгельса на русский язык (в том числе «Капитала»).


Страсть к успеху. Японское чудо

Один из самых преуспевающих предпринимателей Японии — Казуо Инамори делится в книге своими философскими воззрениями, следуя которым он живет и работает уже более трех десятилетий. Эта замечательная книга вселяет веру в бесконечные возможности человека. Она наполнена мудростью, помогающей преодолевать невзгоды и превращать мечты в реальность. Книга рассчитана на широкий круг читателей.


Джоан Роулинг. Неофициальная биография создательницы вселенной «Гарри Поттера»

Биография Джоан Роулинг, написанная итальянской исследовательницей ее жизни и творчества Мариной Ленти. Роулинг никогда не соглашалась на выпуск официальной биографии, поэтому и на родине писательницы их опубликовано немного. Вся информация почерпнута автором из заявлений, которые делала в средствах массовой информации в течение последних двадцати трех лет сама Роулинг либо те, кто с ней связан, а также из новостных публикаций про писательницу с тех пор, как она стала мировой знаменитостью. В книге есть одна выразительная особенность.


Ротшильды. История семьи

Имя банкирского дома Ротшильдов сегодня известно каждому. О Ротшильдах слагались легенды и ходили самые невероятные слухи, их изображали на карикатурах в виде пауков, опутавших земной шар. Люди, объединенные этой фамилией, до сих пор олицетворяют жизненный успех. В чем же секрет этого успеха? О становлении банкирского дома Ротшильдов и их продвижении к власти и могуществу рассказывает израильский историк, журналист Атекс Фрид, автор многочисленных научно-популярных статей.