Камень, ножницы, теорема. Фон Нейман. Теория игр. - [9]
Такие элементарные понятия, как точка, прямая, плоскость, и их взаимоотношения, от простых до сложных, были систематизированы и упорядочены в период с 330 по 275 год до н.э. в одной из самых известных книг во всей истории человечества. Мы говорим о «Началах» Евклида. Этот труд состоит из 13 книг, в которых содержатся все знания по геометрии того времени. Евклид построил свою геометрию на трех ключевых понятиях: аксиомах, теоремах и постулатах. Теоремы относятся к неочевидным предложениям, которые можно доказать на основе аксиом и постулатов посредством логических рассуждений. Всего Евклид ввел 23 аксиомы (или определения) и 5 постулатов. Различие между аксиомой и постулатом очень важно для понимания сущности геометрии, описанной в «Началах». Аксиома не нуждается в доказательстве, так как это ясное и очевидное утверждение. Например, первая аксиома Евклида гласит: «Точка есть то, что не имеет частей». Постулат же — предложение, которое, не будучи таким очевидным, как аксиома, считается истинным без доказательства.
Таким образом, математическое здание строится шаг за шагом на основе системы аксиом и логических правил, которые позволяют создавать теоремы. До появления неевклидовых геометрий этот фундамент казался достаточно прочным и вызывал полное доверие.
В пятом постулате «Начал» Евклида — не таком ясном, как остальные четыре, — утверждается:
«Если через две прямые проходит прямая, образующая с одной стороны внутренние углы, чья сумма меньше суммы двух прямых углов, то если продолжить эти прямые бесконечно, они встретятся с той стороны, с которой сумма двух углов меньше двух прямых углов».
Возьмем прямую R>3, проходящую через прямые R>1 и R>2 (см. рисунок).
Внутренние меньшие углы, о которых идет речь в постулате, обозначены буквами а и b. Согласно пятому постулату, если мы продолжим прямые R>1 и R>2, то они пересекутся в правой части рисунка. Недостаток в этом постулате простоты и очевидности, присущей первым четырем, всегда привлекал внимание геометров. Сам Евклид старался избегать этого постулата и впервые применил его только в доказательстве номер 29 книги I. Из-за этой попытки построить всю свою геометрию без пятого постулата Евклида даже называли первым неевклидовым геометром. Так или иначе, пятый постулат с самого начала вызывал вопросы. Справедлив ли он? И если да, действительно ли это независимый постулат? Или это теорема, которую можно доказать на основе четырех предыдущих постулатов?
Но среди постулатов Евклида было слабое звено — пятый постулат. Он стал одним из самых обсуждаемых в истории математики, предметом споров, длившихся более 2000 лет, и той трещиной, которая разрушила все здание.
Неевклидова геометрия — это любая геометрическая система, отрицающая истинность пятого постулата. Если вспомнить, что евклидова геометрия на протяжении 2000 лет считалась единственно возможным геометрическим подходом к изучению окружающего нас мира, то становится понятно: для ее отрицания требовалась определенная интеллектуальная дерзость. Создание таких альтернативных геометрий, казалось, могло быть только математической игрой, забавой. И действительно, сначала дело обстояло именно так, но со временем эти геометрии стали мощным инструментом не только в математике (в таких областях, как динамические системы, автоморфная функция, теория чисел), они оказались необходимой системой измерений во многих областях современной физики.
В рамках евклидовой геометрии мы оперируем элементами, которые непосредственно принадлежат этому виду геометрии, — точками, прямыми, плоскостями, углами и так далее, а также преобразованиями, которые можно применить к этим элементам. Мы можем переносить их из одного места в другое, вращать их, удлинять, укорачивать или придавать им определенную симметрию. Некоторые преобразования обратимы, то есть если в ходе преобразования из точки А мы переходим в точку В, то существует и другое преобразование, которое приводит нас из точки В в точку А. Также, применяя два преобразования подряд, мы можем получить еще одно преобразование. Если имеется совокупность преобразований, отвечающих этому критерию (и еще нескольким, но в данном случае это не важно), то она называется группой преобразований. Некоторые объекты, с которыми мы имеем дело в геометрии, могут быть в большей или меньшей степени подвергнуты таким преобразованиям.
Предположим, что мы должны перенести окружность. Ее центром является определенная фиксированная точка, но при переносе она меняется. Если же мы оставим центр на месте и уменьшим длину окружности, изменится ее радиус. Но при всех этих преобразованиях одно свойство остается неизменным — соотношение между длиной окружности и ее диаметром. Феликс Клейн заметил, что изучение таких инвариантных свойств было определяющей характеристикой конкретного типа геометрии, в рамках которой можно сравнивать фигуры с одинаковыми свойствами. Тогда он предложил более общее и более абстрактное определение геометрии: она определялась парой (X; G), гдеХ — множество объектов, a G — множество преобразований, применяемых к ним. Все известные геометрии — евклидова, проективная, гиперболическая и так далее — попадали под эту классификацию. Она также открывала путь новым геометрическим системам, поскольку множество объектов X могло состоять из абсолютно любых типов элементов. Клейн изложил свои идеи в докладе «Сравнительное обозрение новейших геометрических исследований», представленном в 1872 году на математической кафедре Эрлангенского университета. Позднее доклад стал известен в математических кругах как Эрлангенская программа Феликса Клейна.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Эта книга воссоздает образ великого патриота России, выдающегося полководца, политика и общественного деятеля Михаила Дмитриевича Скобелева. На основе многолетнего изучения документов, исторической литературы автор выстраивает свою оригинальную концепцию личности легендарного «белого генерала».Научно достоверная по информации и в то же время лишенная «ученой» сухости изложения, книга В.Масальского станет прекрасным подарком всем, кто хочет знать историю своего Отечества.
В книге рассказывается о героических боевых делах матросов, старшин и офицеров экипажей советских подводных лодок, их дерзком, решительном и искусном использовании торпедного и минного оружия против немецко-фашистских кораблей и судов на Севере, Балтийском и Черном морях в годы Великой Отечественной войны. Сборник составляют фрагменты из книг выдающихся советских подводников — командиров подводных лодок Героев Советского Союза Грешилова М. В., Иосселиани Я. К., Старикова В. Г., Травкина И. В., Фисановича И.
Встретив незнакомый термин или желая детально разобраться в сути дела, обращайтесь за разъяснениями в сетевую энциклопедию токарного дела.Б.Ф. Данилов, «Рабочие умельцы»Б.Ф. Данилов, «Алмазы и люди».
Уильям Берроуз — каким он был и каким себя видел. Король и классик англоязычной альтернативной прозы — о себе, своем творчестве и своей жизни. Что вдохновляло его? Секс, политика, вечная «тень смерти», нависшая над каждым из нас? Или… что-то еще? Какие «мифы о Берроузе» правдивы, какие есть выдумка журналистов, а какие создатель сюрреалистической мифологии XX века сложил о себе сам? И… зачем? Перед вами — книга, в которой на эти и многие другие вопросы отвечает сам Уильям Берроуз — человек, который был способен рассказать о себе много большее, чем его кто-нибудь смел спросить.