Геометрия: Планиметрия в тезисах и решениях. 9 класс - [13]

Шрифт
Интервал

б) Докажите, что через точку, лежащую на данной прямой, можно провести единственную прямую, перпендикулярную данной. (1)

12. а) Где лежит центр описанной около треугольника окружности? (1)

б) Докажите соответствующую теорему. (1)

13. а) Где лежит центр вписанной в треугольник окружности? (1)

б) Докажите соответствующую теорему. (1)

14. Докажите свойство касательной к окружности. (1)

15. а) Какие вы знаете свойства параллелограмма? (1)

б) Докажите эти свойства. (1)

16. а) Какие вы знаете признаки параллелограмма? (1)

б) Докажите эти признаки. (1)

17. а) Какие вы знаете свойства и признаки прямоугольника? (1)

б) Докажите эти свойства и признаки. (1)

18. а) Какие вы знаете свойства и признаки ромба? (1)

б) Докажите эти свойства и признаки. (1)

19. а) Какие вы знаете свойства и признаки квадрата? (1)

б) Докажите эти свойства и признаки. (1)

20. а) Сформулируйте теорему Фалеса. (1)

б) Докажите эту теорему. (1)

21. а) Сформулируйте обобщенную теорему Фалеса (теорему о пропорциональных отрезках). (1)

б) Докажите эту теорему. (2)

22. а) Какие свойства средней линии треугольника вы знаете? (1)

б) Докажите эти свойства. (1)

23. а) Какие вы знаете свойства средней линии трапеции? (1)

б) Докажите эти свойства. (1)

24. а) Сформулируйте теорему Пифагора. (1)

б) Докажите теорему Пифагора. (1)

в) Сформулируйте и докажите обратную теорему. (2)

25. Докажите, что любая наклонная больше перпендикуляра, и что из двух наклонных больше та, у которой больше проекция. (1)

26. а) Сформулируйте неравенство треугольника. (1)

б) Докажите неравенство треугольника. (2)

27. Даны координаты точек A(х1; у1) и В(х2; у2).

а) По какой формуле вычисляется длина отрезка AB? (1)

б) Выведите эту формулу. (1)

28. Выведите уравнение окружности с центром в точке А(х0; у0) и радиусом R. (1)

29. Докажите, что любая прямая в декартовых координатах х, у имеет уравнение вида ах + by + с = 0. (2)

30. Напишите уравнение прямой, проходящей через точки А(х1; у1) и В(х2; у2). Ответ: обоснуйте. (2)

31. Докажите, что в уравнении прямой у = kx + b число k есть тангенс угла наклона прямой к положительному направлению оси абсцисс. (2)

32. а) Какие вы знаете основные свойства движений? (2)

б) Докажите эти свойства. (3)

33. Докажите, что:

а) преобразование симметрии относительно точки является движением; (3)

б) преобразование симметрии относительно прямой является движением; (3)

в) параллельный перенос есть движение. (3)

34. Докажите теорему о существовании и единственности параллельного переноса. (3)

35. Докажите, что абсолютная величина вектора kа равна |к| ? |а|, при этом направление вектора kа при а ? О совпадает с направлением вектора а, если k > 0, и противоположно направлению вектора а, если к < 0. (1)

36. Докажите, что любой вектор а можно разложить по векторам b и с (все три вектора лежат на одной плоскости). (1)

37. Даны векторы а = (а1; а2) и b = (BL; b2). Докажите, что

где ? – угол между векторами.

38. а) Какие вы знаете свойства скалярного произведения векторов? (1)

б) Докажите эти свойства. (2)

39. Докажите, что гомотетия есть преобразование подобия. (1)

40. а) Какие вы знаете свойства преобразования подобия? (1)

б) Докажите, что преобразование подобия сохраняет углы между лучами. (2)

41. а) Сформулируйте признак подобия треугольников по двум углам. (1)

б) Докажите этот признак. (1)

42. а) Сформулируйте признак подобия треугольников по двум сторонам и углу между ними. (1)

б) Докажите этот признак. (1)

43. а) Сформулируйте признак подобия треугольников по трём сторонам. (1)

б) Докажите этот признак. (2)

44. а) Сформулируйте свойство биссектрисы треугольника. (1)

б) Докажите, что биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (1)

45. а) Сформулируйте свойство вписанного в окружность угла. (1)

б) Докажите это свойство. (1)

46. а) Докажите, что если хорды АВ и CD окружности пересекаются в точке S, то AS ? BS = CS ? DS. (1)

б) Докажите, что если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS. (1)

47. а) Сформулируйте теорему косинусов для треугольника. (1)

б) Докажите эту теорему. (1)

48. а) Сформулируйте теорему синусов. (1)

б) Докажите эту теорему. (1)

в) Докажите, что в теореме синусов каждое из трёх отношений:

равно 2R, где R – радиус описанной около треугольника окружности. (1)

49. Докажите, что в треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона. (2)

50. а) Чему равна сумма углов выпуклого n-угольника? (1)

б) Выведите формулу суммы углов выпуклого n-угольника. (1)

51. а) Докажите, что в правильный многоугольник можно вписать окружность. (1)

б) Докажите, что около правильного многоугольника можно описать окружность. (1)

52. Дан правильный n-угольник со стороной а. Выведите формулы:

а) радиусов вписанной и описанной окружностей; (1)

б) площади n-угольника; (1)

в) угла при вершине. (1)

53. Докажите, что отношение длины окружности к её диаметру не зависит от размера окружности. (3)

54. Как переводить углы из градусной меры в радианную и наоборот? (1)


Еще от автора Андрей Николаевич Павлов
Математические олимпиады по лигам. 5-9 классы

В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.


Интеллектуальные марафоны в школе. 5-11 классы

В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.


Рекомендуем почитать
Тесты по биологии. 8 класс

Сборник содержит тестовые задания для проверки знаний по курсу «Биология. Человек и его здоровье», составленные в соответствии с программой для общеобразовательных учебных заведений, и предназначен для работы с учебником Н. И. Сонина, М. Р. Сапина «Биология. Человек. 8 класс», включенным в Федеральный перечень.Пособие включает различные типы тестов для тематической и итоговой проверки, которые позволят учителю сделать опрос более разнообразным по форме.В конце пособия приводятся ответы, что дает читателю возможность проверить себя.Пособие адресовано учителям и репетиторам, а также будет полезно школьникам для самоконтроля при подготовке к урокам, зачетам, контрольным и проверочным работам.


Профессия: официант-бармен

Официант, бармен, сомелье –  это популярные сегодня профессии. Многие выбирают их на всю жизнь, не меньшее число рассматривает работу в баре или ресторане как удобный приработок.Действительно, график работы прекрасно совмещается с графиком учебы и работы на неполный рабочий день. Текучесть кадров в ресторанном бизнесе высокая, и работу найти достаточно просто. Заработок также вполне приличный.Однако где приобрести знания и навыки? Нет ничего дешевле, чем приобрести толковый учебник, каковым и является эта книга.


Концепции современного естествознания

В учебнике, написанном коллективом преподавателей РГПУ им. Герцена под руководством Л. А. Михайлова – декана факультета безопасности жизнедеятельности, лауреата премии Президента РФ, представлены новейшие концепции всех естественных наук: биологии, генетики, физики, химии, математики, информатики, биохимии, геологии, антропологии и других. В книге раскрываются социальные последствия новых научных открытий, даются современные технологии обучения в области концепций современного естествознания.Учебник полностью соответствует Государственному образовательному стандарту и имеет гриф УМО.


Экономика фирмы

Объектом изучения данного курса лекций является фирма как единая система, которая функционирует в условиях рыночной экономики. Рассматриваются организационно-правовые формы фирм, основные условия обеспечения экономической стабильности фирмы, принципы ее управления и организационная структура, порядок обеспечения кадрами, модель функционирования фирмы в рыночной среде. Описана комплексная система обеспечения ресурсами (трудовые ресурсы, основные и оборотные средства), система показателей для оценки эффективности их применения.Этот курс лекций предназначен для студентов, аспирантов и преподавателей экономических факультетов университетов и экономических вузов.


Медицинская статистика

Конспект лекций предназначен для подготовки студентов медицинских вузов к сдаче экзаменов.Книга включает в себя полный курс лекций по медицинской статистике, написана доступным языком и будет незаменимым помощником для тех, кто желает быстро подготовиться к экзамену и успешно его сдать.Конспект лекций будет полезен не только студентам, но и преподавателям.


Коммерческое право

Конспект лекций, составленный в соответствии с Государственным образовательным стандартом высшего образования, поможет систематизировать полученные ранее знания и успешно сдать экзамен или зачет по дисциплине «Коммерческое право».Издание предназначено для студентов, преподавателей и аспирантов юридических вузов и факультетов.