Геометрия: Планиметрия в тезисах и решениях. 9 класс - [12]

Шрифт
Интервал

Для прямоугольника характерны все свойства параллелограмма (у прямоугольника противолежащие стороны равны; у прямоугольника противолежащие углы равны (90°); диагонали прямоугольника пересекаются и точкой пересечения делятся пополам).

Диагонали прямоугольника равны (рис. 99):

АС = BD.

Рис. 99.


Признак прямоугольника.

Если у параллелограмма все углы равны, то он является прямоугольником.


Свойства ромба.

Для ромба характерны все свойства параллелограмма (у ромба противолежащие стороны равны – вообще все стороны по определению равны; у ромба противолежащие углы равны; диагонали ромба пересекаются и точкой пересечения делятся пополам).

Диагонали ромба пересекаются под прямым углом.

Диагонали ромба являются биссектрисами его углов (рис. 100).

Рис. 100.


AC ? BD, ?ABD = ?DВС = ?CDB = ?BDA, ?ВАС = ?CAD = ?ВСА = ?DCA.


Признак ромба.

Если у параллелограмма диагонали перпендикулярны, то он является ромбом.


Свойства квадрата.

Квадрат обладает свойствами прямоугольника и ромба.


Признак квадрата.

Если диагонали прямоугольника пересекаются под прямым углом, то он – квадрат.


Свойство средней линии трапеции.

Средняя линия трапеции параллельна основаниям и равна их полусумме (рис. 101).

Рис. 101.


Критерии вписанного и описанного четырехугольников.

Если около четырёхугольника можно описать окружность, то суммы его противоположных углов равны по 180° (рис. 102).

?А + ?С = ?В + ?D = 180°.

Рис. 102.


Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны (рис. 103).

AB + CD = AD + BC.

Рис. 103.

8. Теоремы об окружностях

Свойство хорд и секущих.

Если хорды АВ и CD окружности пересекаются в точке S, то AS ? BS = CS ? DS (рис. 104).

Рис. 104.


Если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS (рис. 105).

Рис. 105.


Число ?.

Отношение длины окружности к её диаметру не зависит от радиуса окружности, то есть оно одно и то же для любых двух окружностей. Это число равно ? (рис. 106).

Рис. 106.

9. Векторы

Теорема о разложении вектора по базису.

Если на плоскости даны два неколлинеарных вектора а и b и любой другой вектор с, то существуют единственные числа n и m, такие, что с = nа + mb (рис. 107).

где

Рис. 107.


Теорема о скалярном произведении векторов.

Скалярное произведение векторов равно произведению их абсолютных q величин (длин) на косинус угла между ними (рис. 108).

ОА ? ОВ = ОА ? OB ? cos ?.

Рис. 108.

Основные формулы планиметрии

Для треугольника (рис. 109):

Рис. 109.

где a, b, с – стороны треугольника;

?, ?, ? – противолежащие им углы;

r и R – радиусы вписанной и описанной окружностей;

ha, ma, la – высота, медиана и биссектриса, проведённые к стороне а;

S – площадь треугольника;

– полупериметр треугольника.

Медианы в треугольнике делятся точкой пересечения в отношении 2:1, считая от вершины (рис. 110).

Рис. 110.

Для четырёхугольников:

где а, b – длины оснований;

h – высота трапеции.


Площадь параллелограмма со сторонами а, b и углом ? между ними вычисляется по формуле S = ab sin ?. Можно также воспользоваться формулой:

где d1, d2– длины диагоналей, ? – угол между ними (или S = aha, где ha – высота).

Для произвольного выпуклого четырёхугольника (рис. 111):

Рис. 111.


Для правильного n-угольника:

(R и r – радиусы описанной и вписанной окружностей, аn – длина стороны правильного n-угольника).

Для окружности и круга (рис. 112):

Рис. 112.

и 1\2R2?, если ? выражен в радианах.

Sсегмента = Sсектора – Sтреугольника.

Формулы аналитической планиметрии

Если даны точки A(x1; y1) и В(х2; у2), то

Уравнение прямой АВ:

легко приводится к виду ах + by + с = 0, где вектор n = (а, b) перпендикулярен прямой.

Расстояние от точки А(х1; у1) до прямой ах + by + с = 0 равно

Расстояние между параллельными прямыми ах + by + с1 = 0 и ах + by + с2 = 0 равно

Угол между прямыми а1х + BLу + с1 = 0 и а2х + b2y + с2 = 0 вычисляется по формуле:

Уравнение окружности с центром в точке O(x0, y0) и радиусом R:(x – xo)2+ (y – yo)2= R2.

3.2. Вопросы для самопроверки

1. а) Какое вы знаете свойство вертикальных углов? (1)

б) Докажите это свойство. (1)

2. а) Сформулируйте признак равенства треугольников по двум сторонам и углу между ними. (1)

б) Докажите данный признак. (1)

3. а) Сформулируйте признак равенства треугольников по стороне и двум углам. (1)

б) Докажите данный признак. (1)

4. а) Перечислите основные свойства равнобедренного треугольника. (1)

б) Докажите эти свойства. (1)

в) Докажите признак равнобедренного треугольника. (1)

5. а) Сформулируйте признак равенства треугольников по трём сторонам. (1)

б) Докажите данный признак. (1)

6. Докажите, что две прямые, параллельные третьей, параллельны. (2)

7. а) Сформулируйте признаки параллельности прямых. (1)

б) Докажите эти признаки. (1)

в) Докажите обратные теоремы. (1)

8. Докажите теорему о сумме углов треугольника. (1)

9. Докажите, что внешний угол треугольника равен сумме двух внутренних, не смежных с ним. (1)

10. а) Сформулируйте признаки равенства прямоугольных треугольников. (1)

б) Докажите признаки равенства прямоугольных треугольников по гипотенузе и катету; по гипотенузе и острому углу. (1)

11. а) Докажите, что из точки, не лежащей на данной прямой, можно опустить на эту прямую единственный перпендикуляр. (1)


Еще от автора Андрей Николаевич Павлов
Математические олимпиады по лигам. 5-9 классы

В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.


Интеллектуальные марафоны в школе. 5-11 классы

В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.


Рекомендуем почитать
Социология

Книга Н. Смелзера «Социология» представляет курс лекций по общей социологии для студентов высших учебных заведений.Достоинство книги в том, что она написана максимально доступным языком и полностью соответствует содержанию курса «Социология», как он отражён в государственном стандарте, а потому данное учебное пособие может быть базовым по этому курсу.Книга Смелзера также предназначена для широкого круга читателей и, в первую очередь, для предпринимателей и руководителей.На русском языке это уже второе издание.


Профессия: официант-бармен

Официант, бармен, сомелье –  это популярные сегодня профессии. Многие выбирают их на всю жизнь, не меньшее число рассматривает работу в баре или ресторане как удобный приработок.Действительно, график работы прекрасно совмещается с графиком учебы и работы на неполный рабочий день. Текучесть кадров в ресторанном бизнесе высокая, и работу найти достаточно просто. Заработок также вполне приличный.Однако где приобрести знания и навыки? Нет ничего дешевле, чем приобрести толковый учебник, каковым и является эта книга.


Концепции современного естествознания

В учебнике, написанном коллективом преподавателей РГПУ им. Герцена под руководством Л. А. Михайлова – декана факультета безопасности жизнедеятельности, лауреата премии Президента РФ, представлены новейшие концепции всех естественных наук: биологии, генетики, физики, химии, математики, информатики, биохимии, геологии, антропологии и других. В книге раскрываются социальные последствия новых научных открытий, даются современные технологии обучения в области концепций современного естествознания.Учебник полностью соответствует Государственному образовательному стандарту и имеет гриф УМО.


Экономика фирмы

Объектом изучения данного курса лекций является фирма как единая система, которая функционирует в условиях рыночной экономики. Рассматриваются организационно-правовые формы фирм, основные условия обеспечения экономической стабильности фирмы, принципы ее управления и организационная структура, порядок обеспечения кадрами, модель функционирования фирмы в рыночной среде. Описана комплексная система обеспечения ресурсами (трудовые ресурсы, основные и оборотные средства), система показателей для оценки эффективности их применения.Этот курс лекций предназначен для студентов, аспирантов и преподавателей экономических факультетов университетов и экономических вузов.


Медицинская статистика

Конспект лекций предназначен для подготовки студентов медицинских вузов к сдаче экзаменов.Книга включает в себя полный курс лекций по медицинской статистике, написана доступным языком и будет незаменимым помощником для тех, кто желает быстро подготовиться к экзамену и успешно его сдать.Конспект лекций будет полезен не только студентам, но и преподавателям.


Коммерческое право

Конспект лекций, составленный в соответствии с Государственным образовательным стандартом высшего образования, поможет систематизировать полученные ранее знания и успешно сдать экзамен или зачет по дисциплине «Коммерческое право».Издание предназначено для студентов, преподавателей и аспирантов юридических вузов и факультетов.