Физика для любознательных. Том 1. Материя. Движение. Сила - [136]

Шрифт
Интервал

, не производя измерений бегущих волн. Этим пользуются для измерения скорости распространения звуковых или коротких радиоволн.

При проектировании приемных антенн инженеры стараются подогнать длину антенны так, чтобы приходящие радиоволны возбуждали в системе антенны стоячие волны напряжения и тока.


Простой вывод формулы для скорости распространения волн по веревке

Мы предлагаем вашему вниманию вывод формулы для скорости распространения волн[167]. Возможно, он вас заинтересует, если же нет, то опустите его. В гл. 37[168] будет дан похожий вывод для скорости распространения электромагнитных волн — световых и радиоволн.

Представим себе веревку, протянутую горизонтально от «источника» волн S до дерева, отстоящего на очень большом расстоянии (фиг. 292).



Фиг. 292.Вывод выражения для скорости распространения волны вдоль натянутой веревки.


Веревка туго натянута, натяжение в ней равно Т ньютон. Предположим, что S внезапно начинает поднимать конец веревки с вертикальной скоростью u и что этот подъем продолжается неопределенно долго. В результате образуется излом, который перемещается по веревке. Излом представляет собой волновое возмущение, распространяющееся вдоль веревки со скоростью v. Волну любой формы можно представить себе состоящей из множества изломов, причем один излом является как бы продолжением другого. Поэтому, вычислив скорость v, с которой перемещается вдоль веревки излом, можно определить скорость распространения вдоль веревки волны любой формы. Спустя t сек, излом проходит вдоль веревки путь vt, a S поднимает свой конец веревки на ut.

Представим себе, что рядом с перемещающимся по веревке изломом бежит со скоростью v наблюдатель, держа коробку, которая закрывает излом, не касаясь, однако, веревки. Наблюдатель увидит, что за короткий интервал времени Δt в коробку войдет участок веревки длиной v∙Δt в горизонтальном направлении и выйдет под некоторым углом к горизонту, обладая вертикальной компонентой скорости u. Масса этого участка веревки равна d∙v∙Δt, где d — «линейная плотность» веревки, т. е. масса на единицу длины (в кг/м). Участок веревки, о котором идет речь, приобретает за время Δt количество движения в вертикальном направлении, равное (d∙v∙Δt)∙(u). Следовательно, на наш участок веревки должна действовать вертикальная сила, которая дается выражением

= ПРИОБРЕТЕННОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ / ВРЕМЯ,

= (dv∙Δt)∙(u)/(Δt) = dvu.

Коробка не касается веревки, поэтому сила эта должна бить обусловлена натяжением T' веревки, расположенной под углом к горизонту: сила F должна представлять собой вертикальную компоненту T'. (Обратите внимание, что со стороны источника к веревке, расположенной под углом, должна быть приложена несколько большая сила T', чем первоначальное натяжение, и натяжение Т в невозмущенной горизонтальной части веревки должна уравновешивать горизонтальная компонента силы Т'.)

Разложим Т' на вертикальную компоненту (Т')и горизонтальную компоненту (Т'). Значит, (Т') — это та сила F, действием которой обусловлено появление количества движения в вертикальном направлении, а (Т')= Т.

Иначе говоря,

F/T = (Т')>у/(Т')>х

А из подобия треугольников

F/T = S>0S/S>0K = ut/v= u/v

Таким образом,

F = T∙(u/v)

Но мы имели

dvu

следовательно,

dvu = Tu/v и v>2 = T/d

Отсюда

v = √(T/d)

СКОРОСТЬ РАСПРОСТРАНЕНИЯ ВОЛНЫ = √(НАТЯЖЕНИЕ ВЕРЕВКИ / МАССА НА ЕДИНИЦУ ДЛИНЫ)

В качестве простого упражнения определите с помощью полученного выражения частоту колебаний вертикального отрезка струнной проволоки длиной 2 м, к нижнему концу которого подвешен груз массой 10 кг. На отрезке колеблющейся проволоки — пять пучностей. Считайте, что 900 м проволоки имеют массу 2 кг, и возьмите любые данные, какие вам потребуются, из предыдущего параграфа.

Ответ. 262,5 колебания в секунду, что соответствует музыкальному звуку, близкому к звуку «до» первой октавы.


Резонанс

Всякая система, совершающая колебания, обладает присущими ей единственными способами колебательного движения, которые называют собственными колебаниями. Колебаниям такого рода соответствуют вполне определенные частоты.

Например, туго натянутая струна может колебаться с образованием одной, двух и т. д. пучностей, и если привести струну в движение, а потом предоставить ее самой себе, то она будет совершать одно из собственных колебаний либо это будет смесь из нескольких таких колебаний. Любое свободное колебание, каким бы сложным оно ни казалось, представляет собой просто смесь собственных колебаний системы. Если же воздействовать на систему с силой, изменяющейся по гармоническому закону, то система откликнется на это воздействие малыми колебаниями, частота которых совпадает с частотой возмущающей силы. Выражаясь иначе, можно сказать, что приходящие волны возбуждают в системе небольшую по амплитуде стоячую волну, частота которой совпадает с частотой приходящих волн. Но если частота внешней силы или приходящей волны совпадает с одной из собственных частот системы, то в системе развиваются колебания очень большой амплитуды. Это явление носит название резонанса. (Настраивая свой радиоприемник на передачу определенной станции, вы используете явление резонанса.) То же самое бессознательно делает ребенок, постепенно усиливая колебания воды в ванне, пока волны не начнут выплескиваться через край. Атомная частица, пролетая мимо ядра, может пройти сквозь потенциальный барьер ядра. Этот неожиданный так называемый


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.