Физика для любознательных. Том 1. Материя. Движение. Сила - [136]
При проектировании приемных антенн инженеры стараются подогнать длину антенны так, чтобы приходящие радиоволны возбуждали в системе антенны стоячие волны напряжения и тока.
Простой вывод формулы для скорости распространения волн по веревке
Мы предлагаем вашему вниманию вывод формулы для скорости распространения волн[167]. Возможно, он вас заинтересует, если же нет, то опустите его. В гл. 37[168] будет дан похожий вывод для скорости распространения электромагнитных волн — световых и радиоволн.
Представим себе веревку, протянутую горизонтально от «источника» волн S до дерева, отстоящего на очень большом расстоянии (фиг. 292).
Фиг. 292.Вывод выражения для скорости распространения волны вдоль натянутой веревки.
Веревка туго натянута, натяжение в ней равно Т ньютон. Предположим, что S внезапно начинает поднимать конец веревки с вертикальной скоростью u и что этот подъем продолжается неопределенно долго. В результате образуется излом, который перемещается по веревке. Излом представляет собой волновое возмущение, распространяющееся вдоль веревки со скоростью v. Волну любой формы можно представить себе состоящей из множества изломов, причем один излом является как бы продолжением другого. Поэтому, вычислив скорость v, с которой перемещается вдоль веревки излом, можно определить скорость распространения вдоль веревки волны любой формы. Спустя t сек, излом проходит вдоль веревки путь v∙t, a S поднимает свой конец веревки на u∙t.
Представим себе, что рядом с перемещающимся по веревке изломом бежит со скоростью v наблюдатель, держа коробку, которая закрывает излом, не касаясь, однако, веревки. Наблюдатель увидит, что за короткий интервал времени Δt в коробку войдет участок веревки длиной v∙Δt в горизонтальном направлении и выйдет под некоторым углом к горизонту, обладая вертикальной компонентой скорости u. Масса этого участка веревки равна d∙v∙Δt, где d — «линейная плотность» веревки, т. е. масса на единицу длины (в кг/м). Участок веревки, о котором идет речь, приобретает за время Δt количество движения в вертикальном направлении, равное (d∙v∙Δt)∙(u). Следовательно, на наш участок веревки должна действовать вертикальная сила, которая дается выражением
F = ПРИОБРЕТЕННОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ / ВРЕМЯ,
= (d∙v∙Δt)∙(u)/(Δt) = d∙v∙u.
Коробка не касается веревки, поэтому сила эта должна бить обусловлена натяжением T' веревки, расположенной под углом к горизонту: сила F должна представлять собой вертикальную компоненту T'. (Обратите внимание, что со стороны источника к веревке, расположенной под углом, должна быть приложена несколько большая сила T', чем первоначальное натяжение, и натяжение Т в невозмущенной горизонтальной части веревки должна уравновешивать горизонтальная компонента силы Т'.)
Разложим Т' на вертикальную компоненту (Т')>у и горизонтальную компоненту (Т')>х. Значит, (Т')>у — это та сила F, действием которой обусловлено появление количества движения в вертикальном направлении, а (Т')>х= Т.
Иначе говоря,
F/T = (Т')>у/(Т')>х
А из подобия треугольников
F/T = S>0S/S>0K = u∙t/v∙t = u/v
Таким образом,
F = T∙(u/v)
Но мы имели
F = d∙v∙u
следовательно,
d∙v∙u = T∙u/v и v>2 = T/d
Отсюда
v = √(T/d)
СКОРОСТЬ РАСПРОСТРАНЕНИЯ ВОЛНЫ = √(НАТЯЖЕНИЕ ВЕРЕВКИ / МАССА НА ЕДИНИЦУ ДЛИНЫ)
В качестве простого упражнения определите с помощью полученного выражения частоту колебаний вертикального отрезка струнной проволоки длиной 2 м, к нижнему концу которого подвешен груз массой 10 кг. На отрезке колеблющейся проволоки — пять пучностей. Считайте, что 900 м проволоки имеют массу 2 кг, и возьмите любые данные, какие вам потребуются, из предыдущего параграфа.
Ответ. 262,5 колебания в секунду, что соответствует музыкальному звуку, близкому к звуку «до» первой октавы.
Резонанс
Всякая система, совершающая колебания, обладает присущими ей единственными способами колебательного движения, которые называют собственными колебаниями. Колебаниям такого рода соответствуют вполне определенные частоты.
Например, туго натянутая струна может колебаться с образованием одной, двух и т. д. пучностей, и если привести струну в движение, а потом предоставить ее самой себе, то она будет совершать одно из собственных колебаний либо это будет смесь из нескольких таких колебаний. Любое свободное колебание, каким бы сложным оно ни казалось, представляет собой просто смесь собственных колебаний системы. Если же воздействовать на систему с силой, изменяющейся по гармоническому закону, то система откликнется на это воздействие малыми колебаниями, частота которых совпадает с частотой возмущающей силы. Выражаясь иначе, можно сказать, что приходящие волны возбуждают в системе небольшую по амплитуде стоячую волну, частота которой совпадает с частотой приходящих волн. Но если частота внешней силы или приходящей волны совпадает с одной из собственных частот системы, то в системе развиваются колебания очень большой амплитуды. Это явление носит название резонанса. (Настраивая свой радиоприемник на передачу определенной станции, вы используете явление резонанса.) То же самое бессознательно делает ребенок, постепенно усиливая колебания воды в ванне, пока волны не начнут выплескиваться через край. Атомная частица, пролетая мимо ядра, может пройти сквозь потенциальный барьер ядра. Этот неожиданный так называемый
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.