Физика для любознательных. Том 1. Материя. Движение. Сила - [134]

Шрифт
Интервал

стала неотъемлемой мерой порции энергии каждого кванта света.

Примерно сто лет назад была проведена классификация линейчатых спектров по сериям и стали появляться правила, выражавшие закономерность распределения частот в серии. Некоторые из этих правил (например, для водорода) имели вид простых математических формул, однако они не укладывались в существовашие тогда представления о строении атома. Поэтому «происхождение спектров» в течение многих лет продолжало оставаться загадкой.

Рентгеновские лучи, наподобие белого света, тоже разлагаются в сплошной спектр с уменьшенным в тысячу раз масштабом λ и ряд узких «линий», добавляющихся к сплошному спектру. Частоты этих линий характерны для атомов того вещества, из которого сделан антикатод рентгеновской трубки. Линии характеристического рентгеновского излучения образуют серии, отличающиеся простотой построения.

Хорошо, если бы вы смогли увидеть различные спектры. Для наблюдения спектра вместо дифракционной решетки можно воспользоваться стеклянной призмой. Разложение белого света при помощи призмы основано на иной зависимости пути лучей различных цветов, слишком сложной для прямых измерений длины волны. Призма — дешевый прибор и дает нам простой способ наблюдения спектров.


Спектры поглощения

Раскаленные твердые и жидкие тела испускают «белый свет», который дифракционная решетка превращает в спектр. Иногда белый свет проходит через раскаленный газ или пар, температура которых ниже температуры раскаленного добела источника света. Это происходит, например, при прохождении солнечного света из центральных областей через более холодную солнечную атмосферу. В этом случае мы получаем «обратный линейчатый спектр» — спектр поглощения. В таком спектре характеристические линии «темные», т. е. в них отсутствует свет[164]. Более холодные газы поглощают как раз те цвета, которые они сами испускают в нагретом состоянии[165]. Это своего рода резонанс, т. е. «отклик» атомов газа на свет их собственной частоты, однако механизм этого явления оставался не вполне ясным, пока Бор не создал свою теорию атома.


Спектроскопия

Спектроскопия — это область науки, занимающаяся изучением и измерением спектров, для которой характерна колоссальная точность измерений. Сегодня мы в состоянии измерить длины волн спектральных линий с точностью до одной десятимиллионной доли, а малые смещения линий даже с еще более высокой точностью. Эталон метра представлял собой бережно сохраняемый металлический стержень с тонкими штрихами на концах. Теперь метр определен как длина известного числа световых длин волн.

Новый стандарт дает следующее определение метра: 1 метр = 1 650 763,73 длин волн излучения газообразного криптона.


Спектры и атомная физика

Исключительная узость спектральных линий, строгая закономерность в их расположении по шкале частот и смещение спектральных линий в магнитном или электрическом полях — все эти свойства после их открытия дали множество сведений о строении атомов. Тем не менее большая часть данных долгое время оставалась неразгаданной и получила правильное истолкование лишь в первой четверти нынешнего столетия, когда Бор выдвинул свою теорию. Теория Бора позволила дать весьма удовлетворительное и притом общее объяснение линейчатых спектров, спектров поглощения и даже спектров рентгеновских лучей. Свойства спектров удалось связать с особенностями поведения электронов в атомах.

Теория атома продолжает развиваться и сегодня. Поэтому спектроскопия по-прежнему играет первостепенную роль в технике измерений с высокой точностью, необходимых для изучения строения атома.


Стоячие волны

В современных моделях атома поведение электронов и ядерных частиц часто описывают с помощью так называемых стоячих волн. Собственно говоря, это не волны, а своеобразная волновая картина колебаний, которые никуда не распространяются. Прежде чем показать, почему они вообще называются волнами, рассмотрим их просто как различные формы колебаний.

Скрипичная струна, закрепленная на концах, способна совершать множество простых колебаний: может наблюдаться одна область максимального отклонения вверх и вниз (пучность) посредине струны; может возникать волновая картина, при которой колеблющаяся струна разбита на два, три, четыре… любое количество участков с пучностями посредине (фиг. 289).



Фиг. 289.Формы колебаний натянутой струны.


На соседних участках отклонения струны противоположны по фазе. Если прогнуть и отпустить или небрежно дернуть струну, возникнет сразу много видов колебаний. В то же время легко возбудить любое простое колебание струны, если тронуть ее пальцем (или слегка прогнуть и отпустить), одновременно коснувшись струны в подходящем месте другим пальцем, чтобы подавить нежелательные виды колебаний (фиг. 290). Коснуться струны нужно в узле, т. е. в точке, которая при выбранной форме колебаний остается неподвижной.



Фиг. 290.Возбуждение колебаний простой формы.


При простом колебании струны колеблющиеся точки совершают простое гармоническое движение, и скрипка становится источником гармонических звуковых волн такой же частоты.

Пифагор выражал гармонию музыкальных звуков через отношения длины струн, а Галилей дал правило для определения частоты колебаний струны. Для одной и той же струны, колеблющейся с 1, 2, 3…. пучностями, частоты колебаний находятся в пропорции 1:2:3 и т. д. В современной теории атом тоже рассматривается как система, обладающая подобными формами стоячих волн с характеристическими частотами. Простые орбиты электронов в первых моделях атомов уступили место замкнутым кольцам из стоячих волн.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.