Физика для любознательных. Том 1. Материя. Движение. Сила - [133]

Шрифт
Интервал

— к спектру «второго порядка»


Если направить на дифракционную решетку желтый свет от окрашенного солью пламени, то мы увидим центральную желтую «линию» (изображение источника — щели, находящейся перед пламенем) и такие же резко очерченные желтые линии в первом порядке, во втором порядке и т. д. Представленная на фиг. 285 схема дает для спектра первого порядка соотношение

длина волны = d∙sin А,

где А — угол между центральной линией и линией первого порядка, a d — расстояние между штрихами решетки, известное из данных делительной машины. Таким образом, имея в своем распоряжении хорошую дифракционную решетку, можно точно измерить длины световых волн. (Вы сами можете проделать такое приближенное измерение, используя долгоиграющую пластинку в качестве отражательной решетки. Чтобы измерить d для этой решетки, поставьте пластинку на проигрыватель и сосчитайте число оборотов.)

Освещение дифракционной решетки белым светом дает широкий спектр в нервом порядке, еще более широкий во втором порядке и т. д.



Фиг. 285.Схема распространения волн, прошедших через дифракционную решетку.


Лучи красного света отклоняются сильнее всего (поэтому длина волны красного света самая большая), затем следуют оранжевые, желтые, зеленые, синие, фиолетовые лучи. Измерения углов дают примерно следующие значения длин волн:



За пределами видимого спектра

За пределами видимого света находится область инфракрасного излучения с большей длиной волны, которую можно легко измерить с помощью грубых дифракционных решеток. За инфракрасными лучами спектр продолжают радиоволны — от самых коротких волн так называемого сверхвысокочастотного (СВЧ) диапазона до обычных радиоволн, у которых λ измеряется сотнями метров. По другую сторону области видимого света располагаются ультрафиолетовые лучи с более короткими длинами волн, чем у видимого света (фиг. 286); длину волны ультрафиолетовых лучей измеряют с. помощью тонких дифракционных решеток, которые приходится помещать в вакуум, чтобы избежать поглощения этих лучей в воздухе.



Фиг. 286.Спектр электромагнитных волн.

>а — некоторые источники электромагнитных волн; б — спектр электромагнитных волн.


Спектры рентгеновских лучей

Если длины волн видимого света измеряются многими тысячами ангстрем (А°), то рентгеновские лучи обладают значительно более короткой длиной волны, близкой к 1 А°.

Едва ли мыслимо нарезать столь тонкую решетку, у которой штрихи были бы расположены на расстоянии, скажем, 10 А° один от другого, чтобы наблюдать дифракцию рентгеновских лучей. (Правда, при наклонном расположении обычных решеток рентгеновские лучи «видят» уменьшенное расстояние между штрихами.) Мы же используем слои атомов в кристаллах. Электроны атомов в каждом слое рассеивают рентгеновские лучи в виде слабой «отраженной волны». Волны одной длины, отраженные от ряда слоев атомов под определенным углом, складываются в заметный по интенсивности пучок, совсем как при образовании обычного спектра складываются волны, идущие от штрихов решетки. Таким образом, имея кристалл известной структуры, можно измерить длину волны рентгеновских лучей (фиг. 287), а значит, использовать рентгеновские лучи для исследования расположения атомов в кристаллах. Оказалось, что все твердые тела имеют кристаллическое строение и даже у жидкостей расположению молекул присуща известная локальная упорядоченность.



Фиг. 287.Дифракция рентгеновских лучей в кристалле.

>Рентгеновские лучи («свет» очень короткой длины волны) отражаются слоями атомов, и волны, отраженные от большого числа слоев, складываясь, дают в некоторых направлениях волну большой интенсивности.


Линейчатые спектры

Направленный на дифракционную решетку свет, испускаемый сильно нагретым газом, скажем парами натрия при внесении в пламя соли или неоном в газосветных лампах рекламного освещения, содержит всего несколько цветов. Его спектр состоит из разделенных темными промежутками полос, настолько узких, что каждый цвет образует тонкую «линию». Натрий дает желтую линию — фактически две расположенные близко друг к другу линии. Неон дает много линий. Водород, если заставить его светиться, испускает серию линий — красную, зелено-синюю, синюю, фиолетовую, причем промежутки между линиями подчиняются простому закону. Ртуть дает две желтые линии (фиг. 288), очень яркую зеленую линию, фиолетовую и другие линии, но не испускает красного света — отсюда странный цвет ртутных ламп уличного освещения.



Фиг. 288.Спектры.


На измерении таких линейчатых спектров основан единственный в своем роде чувствительный метод анализа. Дело в том, что каждый химический элемент испускает характерные для него одного линии. Линии, присущие химическим элементам, если классифицировать их по длинам волн, распадаются на серии.

По длине волны линии легко вычислить ее частоту:

ЧАСТОТА = СКОРОСТЬ / ДЛИНА ВОЛНЫ, или v = c/λ

При классификация линий по сериям вместо длин волн стали пользоваться частотами, и теперь, ко всеобщему удовольствию, эта традиция утвердилась. Частоты линий в каждой серии описываются еще более простой формулой. Но дело не только в этом: в современной теории


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.