Физика для любознательных. Том 1. Материя. Движение. Сила - [132]
Если проделывать описанный опыт с источниками света разных цветов, то получится различное расстояние между полосами: при красном свете расстояние будет больше, чем при зеленом, а при зеленом — больше, чем при синем, что свидетельствует о разнице в длине волны. Поэтому если пользоваться белым светом, то при удалении от центра полосы становятся неясными из-за наложения друг на друга полос различных цветов.
Вам следует посмотреть эти «полосы Юнга», которые служат доказательством волновой природы света и свидетельствуют об очень малой длине световых волн. (Потом вы узнаете, что такое «фотоэлектрический эффект», который доказывает, что свет — это не волны, распространяющиеся во все стороны, а поток частиц. Этот парадокс будет рассматриваться в конце курса.)
Опыт 2. Приближенное измерение длин волн света. Возьмите в качестве источника света электрическую лампочку с прямой нитью накала. В нескольких метрах от лампочки поместите две щели, параллельные нити накала. Расположитесь в нескольких метрах за щелями и наблюдайте интерференционные полосы через кусок матового стекла или матированного целлулоида. (Наблюдать полосы спереди на белом экране трудно, так как они могут быть слишком слабыми; с помощью прозрачного экрана увидеть их значительно легче.) Чтобы изготовить щели, достаточно процарапать две линии на зачерненной фотопластинке или на серебряной подложке старого зеркала. Линии должны располагаться одна от другой на расстоянии примерно 0,5 мм или еще ближе.
Измерьте примерно расстояние между светлыми полосами и вычислите λ. (Если опыт производится с белым светом, то этот результат будет представлять собой очень грубую оценку средней длины волны.)
Помещенный между источником и щелями зеленый фильтр позволяет увидеть больше полос и получить более точную оценку для зеленого света. Однако цель этого опыта — иллюстрация принципа, а не достижение точности в измерении.
Воспользуйтесь рисунком, представленным на фиг. 282, где дана геометрия опыта.
Фиг. 282.Схема образования интерференционных полос.
Если центральная полоса находится в точке Р, а ближайшая светлая полоса — в точка Q, то разность хода S>1Q — S>2Q должна быть равна λ. Проведем отрезок S>2M перпендикулярно к TQ. Тогда S>1M — это разность хода λ. Учитывая, что расстояния велики, а углы малы, можно считать треугольник S>1S>2M практически подобным треугольнику PQT. Тогда из подобия этих треугольников имеем
λ/S>1S>2 = PQ/TQ
Следовательно,
λ = (S>1S>2)∙PQ/TQ
λ = (РАССТОЯНИЕ МЕЖДУ ЩЕЛЯМИ)∙(РАССТОЯНИЕ МЕЖДУ ПОЛОСАМИ) / РАССТОЯНИЕ ОТ ЩЕЛЕЙ ДО ПОЛОС
Интерференция волн на поверхности воды
Посмотрите на волны, возбуждаемые в мелком резервуаре колеблющимся камертоном, ножки которого представляют собой два источника, излучающих волны в одинаковой фазе. Вы заметите, что в определенных направлениях распространяются усиленные волны — «яркие полосы», между которыми расположены области слабо возмущенной воды. Полоса усиленных волн представляет собой гиперболу, для точек которой (например, для точки х на фиг. 283, в) справедливы уравнения:
S>1X — S>2X = λ для одной гиперболы,
= 2λ для следующей
и т. д.
Фиг. 283. Интерференционные полосы в среде.
Дифракционные решетки: спектры
Возьмем теперь не две, а большое число параллельных щелей, расположенных на равных расстояниях одна от другой. Таким способом мы при получении дифракционных картин пропускаем больше света, и сама картина оказывается более четкой. Чтобы получить более широкую дифракционную картину, расстояние между щелями делают меньше (скажем, >1/>300 мм вместо 1 мм демонстрации интерференционных полос).
Такая система щелей называется дифракционной решеткой.
Изготовляют такие решетки нанесением штрихов на стеклянную пластинку с помощью алмаза с острым концом. Для нанесения штрихов используют очень точную делительную машину, соблюдающую равные интервалы между штрихами. Промежутки между штрихами играют роль прозрачных щелей.
Если направить на такую стеклянную дифракционную решетку пучок белого света, интерференционные полосы разбрасываются настолько, что по обеим сторонам от узкой центральной белой полосы становятся видны широкие цветные полосы (спектры), с помощью линзы свет, идущий в определенном направлении, собирают и получают изображение исходного источника — щели.
В монохроматическом свете изображение источника представляет собой резко очерченную узкую полосу, а в белом свете множество таких изображений при наложении даст широкий спектр.
Первый слева и справа спектр (спектр «первого порядка») создают волны, которые от каждой щели проходят на λ больше (или меньше), чем волны от соседней щели. В следующую спектральную полосу (спектр «второго порядка») приходят волны, у которых путь от двух соседних щелей отличается на 2λ. При этом, конечно, все приходящие волны данного света согласуются по фазе (фиг. 284).
Фиг. 284.Дифракционная решетка.
>а — к центральной светлой полосе; б — к спектру «первого порядка»;
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.