Физика для любознательных. Том 1. Материя. Движение. Сила - [135]

Шрифт
Интервал

Пифагор выражал гармонию музыкальных звуков через отношения длины струн, а Галилей дал правило для определения частоты колебаний струны. Для одной и той же струны, колеблющейся с 1, 2, 3…. пучностями, частоты колебаний находятся в пропорции 1:2:3 и т. д. В современной теории атом тоже рассматривается как система, обладающая подобными формами стоячих волн с характеристическими частотами. Простые орбиты электронов в первых моделях атомов уступили место замкнутым кольцам из стоячих волн.

Чем дальше орбита, тем большее число пучностей стоячей волны укладывается в кольце. Примерно такие же волновые картины рисуем мы в своих представлениях и для атомного ядра. Но во всех этих случаях волны — это не участки струны, отклоняющиеся вверх и вниз, и даже не колеблющиеся электроны: волны здесь представляют собой лишь некую таинственную меру вероятности нахождения частиц в том или ином месте.

Хотя стоячие волны на струне определяют просто форму устойчивых колебаний струны, их можно представить себе как результат сложения бегущих волн. Возьмем очень длинную натянутую веревку и создадим две одинаковые волны, бегущие от каждого из концов веревки к ее середине (фиг. 291).

Срединный участок веревки остается невозмущенным, пока его не достигнут обе волны. Продолжая распространяться по веревке дальше и накладываясь друг на друга, эти бегущие волны создают установившуюся картину колебаний веревки. (Здесь мы сталкиваемся с проявлением принципа суперпозиции; две волны, распространяющиеся в разных направлениях, не мешают друг другу, поэтому возникающая картина представляет собой просто результат сложения обеих волн.) В тот момент, когда обе бегущие волны находятся в противофазе (а на фиг. 291), их сумма равна нулю; веревка в этот момент совершенно прямая, но участки ее быстро движутся в поперечном направлении, проходя через «нулевые положения».

Спустя >1/>4 периода одна волна продвинется на >1/>4 λ вперед, а другая — на >1/>4 λ в противоположном направлении, и обе волны будут в одинаковой фазе, поэтому результирующая волна будет иметь удвоенную высоту гребней. Затем, через >1/>4 периода обе волны снова будут в сумме давать нуль, а еще через >1/>4 периода появится волна с удвоенной амплитудой и другой полярностью отклонения. На фиг. 291 изображены стадии волновой картины через интервалы в >1/>4 периода (а-г).



Фиг. 291. Получение стоячих волн путем сложения двух цугов бегущих волн.


Путем построения графиков или с помощью алгебры и тригонометрии можно показать, что в промежуточных стадиях получается точно такая же результирующая волновая картина, как при колебаниях с максимальной амплитудой, только высота гребней будет меньше. Гребни и впадины наблюдаются всегда между одними и теми же точками веревки — узлами. Движение в целом можно представить графиком д на фиг. 291. Действительно, веревка разбивается на ряд участков, в концах которых колебаний нет, а середины колеблются с наибольшей амплитудой. Получается точно такая же картина, как стоячая волна в длинной скрипичной струне с большим числом пучностей. Значит, картину стоячей волны, устанавливающейся, скажем, на скрипичной струне, можно считать результатом сложения двух бегущих волн, которые распространяются в противоположных направлениях навстречу друг другу. Посмотрите на фиг. 291 и вы увидите, что узлы стоячей волны отстоят друг от друга на >1/>2 λ (где λ — длина волны каждой из бегущих волн). Преимущества такого искусственного[166] представления колебаний с пучностями и узлами в виде стоячей волны в том, что оно позволяет определить длину волны обычных бегущих волн такой же частоты. Эта длина волны λ вдвое больше длины участка между двумя узлами.

Мы рассматриваем колеблющуюся струну, закрепленную на концах, как часть картины стоячих волн. Концы струны всегда неподвижны, это узлы. Если струна колеблется с одной пучностью, то длина струны L равна >1/>2 длины волны: L =>1/>2 λ>1. Если колеблющаяся струна имеет две пучности, то длина бегущей волны λ>2 короче и на L укладываются две полуволны: L =2(>1/>2 λ>2). При трех пучностях L =3(>1/>2 λ>3). и т. д. Таким образом, длины волн образуют последовательность:

λ>1 = 2Lλ>2 = 2L/2, λ>3 = 2L/3 и т. д.

Но для любой бегущей волны скорость v = fλ. Поэтому частоты колебаний струны равны

f>1 = v/λ>1 = v/2L

f>2 = v/λ>2 = 2(v/2L)

f>3 = v/λ>2 = 3(v/2L) и т. д.

Итак, рассматривая простую картину волн и основываясь на предположении, что волны складываются геометрически, можно установить, что собственные частоты струны, закрепленной на концах, относятся как 1:2:3…. (Точно так же обстоит дело с колебаниями воздуха в трубе, флейте или органной трубе. Правда, многие музыкальные инструменты, например колокольчики, обладают колебаниями, частоты которых не образуют простой ряд целых чисел. Вот почему при ударе по колокольчикам они издают менее гармоничный звук.) Если бы мы знали скорость распространения волн по веревке, то смогли бы вычислить фактические частоты. (В следующем разделе дан вывод выражения для скорости v распространения волн по струне или веревке.) Напротив, измерив λ для стоячих волн известной частоты, можно определить


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Ядерная зима. Что будет, когда нас не будет?

6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.



Неизвестный алмаз. «Артефакты» технологии

В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


Вторжение в физику 20-го века

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Молния и гром

В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.