Физика для любознательных. Том 1. Материя. Движение. Сила - [135]
Пифагор выражал гармонию музыкальных звуков через отношения длины струн, а Галилей дал правило для определения частоты колебаний струны. Для одной и той же струны, колеблющейся с 1, 2, 3…. пучностями, частоты колебаний находятся в пропорции 1:2:3 и т. д. В современной теории атом тоже рассматривается как система, обладающая подобными формами стоячих волн с характеристическими частотами. Простые орбиты электронов в первых моделях атомов уступили место замкнутым кольцам из стоячих волн.
Чем дальше орбита, тем большее число пучностей стоячей волны укладывается в кольце. Примерно такие же волновые картины рисуем мы в своих представлениях и для атомного ядра. Но во всех этих случаях волны — это не участки струны, отклоняющиеся вверх и вниз, и даже не колеблющиеся электроны: волны здесь представляют собой лишь некую таинственную меру вероятности нахождения частиц в том или ином месте.
Хотя стоячие волны на струне определяют просто форму устойчивых колебаний струны, их можно представить себе как результат сложения бегущих волн. Возьмем очень длинную натянутую веревку и создадим две одинаковые волны, бегущие от каждого из концов веревки к ее середине (фиг. 291).
Срединный участок веревки остается невозмущенным, пока его не достигнут обе волны. Продолжая распространяться по веревке дальше и накладываясь друг на друга, эти бегущие волны создают установившуюся картину колебаний веревки. (Здесь мы сталкиваемся с проявлением принципа суперпозиции; две волны, распространяющиеся в разных направлениях, не мешают друг другу, поэтому возникающая картина представляет собой просто результат сложения обеих волн.) В тот момент, когда обе бегущие волны находятся в противофазе (а на фиг. 291), их сумма равна нулю; веревка в этот момент совершенно прямая, но участки ее быстро движутся в поперечном направлении, проходя через «нулевые положения».
Спустя >1/>4 периода одна волна продвинется на >1/>4 λ вперед, а другая — на >1/>4 λ в противоположном направлении, и обе волны будут в одинаковой фазе, поэтому результирующая волна будет иметь удвоенную высоту гребней. Затем, через >1/>4 периода обе волны снова будут в сумме давать нуль, а еще через >1/>4 периода появится волна с удвоенной амплитудой и другой полярностью отклонения. На фиг. 291 изображены стадии волновой картины через интервалы в >1/>4 периода (а-г).
Фиг. 291. Получение стоячих волн путем сложения двух цугов бегущих волн.
Путем построения графиков или с помощью алгебры и тригонометрии можно показать, что в промежуточных стадиях получается точно такая же результирующая волновая картина, как при колебаниях с максимальной амплитудой, только высота гребней будет меньше. Гребни и впадины наблюдаются всегда между одними и теми же точками веревки — узлами. Движение в целом можно представить графиком д на фиг. 291. Действительно, веревка разбивается на ряд участков, в концах которых колебаний нет, а середины колеблются с наибольшей амплитудой. Получается точно такая же картина, как стоячая волна в длинной скрипичной струне с большим числом пучностей. Значит, картину стоячей волны, устанавливающейся, скажем, на скрипичной струне, можно считать результатом сложения двух бегущих волн, которые распространяются в противоположных направлениях навстречу друг другу. Посмотрите на фиг. 291 и вы увидите, что узлы стоячей волны отстоят друг от друга на >1/>2 λ (где λ — длина волны каждой из бегущих волн). Преимущества такого искусственного[166] представления колебаний с пучностями и узлами в виде стоячей волны в том, что оно позволяет определить длину волны обычных бегущих волн такой же частоты. Эта длина волны λ вдвое больше длины участка между двумя узлами.
Мы рассматриваем колеблющуюся струну, закрепленную на концах, как часть картины стоячих волн. Концы струны всегда неподвижны, это узлы. Если струна колеблется с одной пучностью, то длина струны L равна >1/>2 длины волны: L =>1/>2 λ>1. Если колеблющаяся струна имеет две пучности, то длина бегущей волны λ>2 короче и на L укладываются две полуволны: L =2(>1/>2 λ>2). При трех пучностях L =3(>1/>2 λ>3). и т. д. Таким образом, длины волн образуют последовательность:
λ>1 = 2L, λ>2 = 2L/2, λ>3 = 2L/3 и т. д.
Но для любой бегущей волны скорость v = f∙λ. Поэтому частоты колебаний струны равны
f>1 = v/λ>1 = v/2L
f>2 = v/λ>2 = 2(v/2L)
f>3 = v/λ>2 = 3(v/2L) и т. д.
Итак, рассматривая простую картину волн и основываясь на предположении, что волны складываются геометрически, можно установить, что собственные частоты струны, закрепленной на концах, относятся как 1:2:3…. (Точно так же обстоит дело с колебаниями воздуха в трубе, флейте или органной трубе. Правда, многие музыкальные инструменты, например колокольчики, обладают колебаниями, частоты которых не образуют простой ряд целых чисел. Вот почему при ударе по колокольчикам они издают менее гармоничный звук.) Если бы мы знали скорость распространения волн по веревке, то смогли бы вычислить фактические частоты. (В следующем разделе дан вывод выражения для скорости v распространения волн по струне или веревке.) Напротив, измерив λ для стоячих волн известной частоты, можно определить
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.