Диалоги о математике - [18]
Гиерон. Но разве в прикладной математике так уж необходимы строгие доказательства? Ты сказал, что математическая модель — это только приближение к действительности. Если ты используешь приблизительно точную формулу, твои результаты будут все так же приблизительны, и, во всяком случае, они никогда не могут быть абсолютно точными.
Архимед. Ты ошибаешься, мой государь. Именно потому, что математическая модель — это только приближение к действительности и всегда имеется некоторое отличие от нее, нужно остерегаться и не увеличивать это различие еще больше небрежным использованием математики. Надо быть как можно более точным. Кстати, относительно приближений существует общее заблуждение, что использование их означает отклонение от математической точности. Приближения имеют точную теорию, и результаты о приближениях, например неравенства, должны доказываться так же строго, как и тождества. Возможно, ты помнишь приближения для площади круга с заданным диаметром. Я доказал их со строгостью, обычной в геометрии.
Гиерон. К каким еще результатам ты пришел при помощи механического метода?
Архимед. Этот метод привел меня также к открытию того, что объем сферы равен двум третям объема описанного около нее цилиндра.
Гиерон. Я слышал, ты хочешь, чтобы после смерти на твоем надгробии была начертана эта теорема. Ты считаешь ее своим самым выдающимся достижением?
Архимед. Я считаю, что сам по себе метод гораздо важнее, чем любые частные результаты, которые я получил с его помощью. Ты помнишь, я однажды сказал о рычагах: «Дайте мне точку опоры — и я сдвину земной шар»? Конечно, на Земле нет такой точки. Однако в математике имеется точка, на которую можно опереться, — это аксиомы и логика.
Гиерон. Ты все время говоришь о прикладной математике, но примеры, которые ты даешь, относятся к геометрии. Как можно применять геометрию, я теперь вижу. Например, функционирование машины зависит от формы и размеров ее деталей. Путь камня, брошенного твоей катапультой, есть кривая, ты сказал, близкая к параболе. Но как обстоит дело с другими ветвями математики, скажем теорией чисел? Мне даже трудно себе представить, что она может иметь какую-нибудь практическую ценность. Конечно, я не говорю об элементах арифметики, которые используются в любых вычислениях. Я имею в виду понятия делимости, простых чисел, наименьшего кратного и другие, подобные им.
Архимед. Если ты соединяешь два зубчатых колеса с разным количеством зубьев, то с наименьшим кратным сталкиваешься неизбежно. Тебе достаточно этого простого примера? Недавно я получил письмо от моего друга Эратосфена Корейского, в котором он пишет о простом, но остроумном методе (он называет его методом решета) для нахождения простых чисел. Думая о его методе, я сделал эскиз машины, которая реализует его идею. Эта машина работает с набором зубчатых колес. Ты поворачиваешь ручку несколько раз, скажем п.., смотришь в отверстие и видишь просвет, значит, п — простое число; если же просвет закрыт, п — число, не являющееся простым.
Гиерон. Это в самом деле забавно. Когда кончится война, ты должен построить такую машину. Моим гостям она понравится.
Архимед. Обязательно сделаю ее, если буду жив. Это покажет, что машины могут решать математические проблемы. Надеюсь, математики наконец-то поймут, что даже с их собственной точки зрения они могут кое-что выиграть, изучая взаимосвязь математики и машин.
Гиерон. Говоря о выигрышах, я вспоминаю историю о Евклиде. Один из учеников, изучавший геометрию, спросил его: «Что я выиграю от изучения этих вещей?» Евклид позвал своего раба и сказал: «Дай ему монету, так как он хочет иметь доход от того, что изучает». Мне кажется, Евклид думал, что математикам не обязательно заботиться о практическом использовании их результатов.
Архимед. Я, конечно, слышал этот анекдот, но ты удивиться, если узнаешь, что я полностью согласен с Евклидом. На его месте я бы сказал что-нибудь в этом же роде.
Гиерон. Ты опять сбил меня с толку. До сих пор ты восторженно говорил о применениях математики, а теперь соглашаешься с теми, кто думает, что единственная награда, которой ученый должен добиваться, — наслаждение от познания.
Архимед. Ты да и большинство других неправильно понимаете историю о Евклиде. Не думай, что он не интересовался практическими следствиями из математических результатов и считал, что они недостойны философа. Это полная бессмыслица. Он написал, ты, конечно, знаешь, книгу об астрономии под названием «Явления» и книгу об оптике; я уверен, что он также автор книги «Катоптрика»— ее я использовал при конструировании моих зажигательных зеркал. Он также интересовался механикой. Как я понимаю, Евклид хотел подчеркнуть тот замечательный факт, что математика награждает только тех, кто интересуется ею не столько из-за наград, сколько ради нее самой. Математика похожа на твою дочь Елену, которая всякий раз подозревает поклонника, что он интересуется ею только потому, что хочет стать зятем царя. Она хочет такого мужа, который любил бы ее за красоту, ум, обаяние, а не за силу и власть, которую он сможет получить, женившись на ней. Математика также открывает свои тайны только тому, кто приближается к ней с чистой любовью, ради ее собственной красоты. И те, кто делает так, вознаграждаются результатами практической важности. Но если спрашивать себя на каждом шагу: «Какая польза от этого?», то невозможно достичь многого. Ты помнишь, я сказал тебе, что римляне никогда не смогут добиться успеха в прикладной математике. Теперь ты видишь, почему: они слишком практичны.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
В предлагаемой вниманию читателей книге американского популяризатора О. О. Байндера в общедоступной форме рассказывается о многочисленных космических загадках. Некоторые из них уже «с бородой», другие связаны с открытиями последних лет.
В этой книге затронут широкий круг проблем, связанных с биологией человека, — его место в природе, биологические и социальные особенности, закономерности его индивидуального и исторического развития, взаимоотношения с окружающей средой.Автор касается и многих других сторон человеческого бытия, которые приобрели в наши дни большую социальную и политическую значимость.Книга хорошо иллюстрирована, просто и ясно написана и будет интересна массовому читателю.
В книге известного популяризатора науки А. Азимова рассматривается сложный путь развития биологии с древних времен до наших дней. Автор уделяет внимание всем отраслям биологии, показывая их во взаимодействии со смежными науками.Читатель узнает о вкладе в биологию великих ученых всех времен — Гарвея, Левенгука, Геккеля, Дарвина, Пастера, Ивановского, Мечникова, Павлова и других.Написанная просто и доступно, книга будет интересным и полезным чтением для преподавателей высшей школы, учителей, студентов, школьников и для всех любителей естественных наук.
Книга известных американских ученых, супругов Лоруса Дж. Милна и Маргарет Милн, «Чувства животных и человека» — занимательный, а местами и поэтичный рассказ об ощущениях, свойственных живым существам. О сложных проблемах бионики авторы говорят легко и просто, без излишней наукообразности. Мы узнаем из книги, почему пчелы не видят красного цвета, как птицы ориентируются при перелетах, каким образом летучие мыши чувствуют преграды на своем пути и многое, многое другое. При этом Милны все время сравнивают чувства животных с человеческими чувствами, наводят читателя на мысль о том, что живые организмы с их сложной и малоизученной структурой органов чувств представляют большой интерес не только для биологов, но и для физиков, математиков и особенно конструкторов, создающих самоорганизующиеся устройства.