Золотое сечение. Математический язык красоты - [7]

Шрифт
Интервал

>2]

Для рациональных чисел соответствующие цепные дроби конечны. Например:



Любое иррациональное число, которое содержит квадратный корень, также может быть выражено в виде цепной дроби. Решение уравнения х>2 - Ьх - 1 = 0 может быть выражено цепной дробью с периодом Ь.



МЕТАЛЛИЧЕСКИЕ СЕЧЕНИЯ

Мы видели, что золотое сечение является положительным корнем квадратного уравнения. Этот подход был обобщен, что дало возможность определить подобные числа, которые образуют семейство так называемых металлических сечений. Наряду с золотым сечением Ф существуют другие сечения: серебряное, бронзовое, медное… Все они аналогичны Ф в смысле геометрических построений и предела отношений чисел последовательности. Металлические отношения всегда определяются алгебраически как положительные решения квадратных уравнений

х>2pxq = 0,

где р и q — натуральные числа, которые приводят к различным сечениям из семейства металлических сечений. Если взять р = 2 и q = 1, то положительным решением уравнения будет число 1 + √2 = 2,414213562373095048. Оно называется серебряным сечением.

Если взять р = 3 и q = 1,то положительное решение уравнения (3 + √13)/2 = 2,30277563773199464… дает нам бронзовое сечение.

Аналогия между металлическими сечениями, пожалуй, лучше всего видна, когда они выражены в виде цепных дробей. Мы уже знаем, что Ф = [1¯]. Оказывается, серебряное сечение = [2¯], а бронзовое сечение = [3¯].


Используя цепные дроби для нахождения приближенного значения Ф, мы получим следующее выражение:



Мы знаем, что это верно, потому что мы можем записать (6) в виде:



Таким образом, мы нашли еще два способа выражения Ф(5) и (6). В настоящее время простота компьютерных расчетов снизила важность этих способов, но на протяжении долгого времени эти подходы всегда упоминались в классической литературе. Даже сегодня эти методы хороши для умственной разминки и требуют лишь карманного калькулятора.


Последовательность Фибоначчи

История математики полна неожиданностей. Одна из них касается золотого сечения, известного еще с древних времен и тесно связанного с геометрией. Однако спустя столетия это соотношение было найдено в ряде дробей, возникших из чисто арифметической последовательности. Гением, нашедшим эту связь между геометрией и арифметикой, был один из самых выдающихся математиков средневековья Леонардо Пизанский, более известный как Фибоначчи.

Фибоначчи написал труды по геометрии, алгебре и теории чисел, но его самая знаменитая книга посвящена вычислениям. Liber Abaci («Книга абака»), опубликованная в 1202 г., имеет обманчивое название (буквальное значение слова «абак» — «счетная доска»), возможно, намеренно ироничное, потому что в действительности она пытается продемонстрировать преимущества арабских цифр для вычислений перед методами, основанными на применении счётов и римских цифр, которые доминировали в то время в Италии. Книга Фибоначчи положила конец этой практике, но это произошло не сразу. Несмотря на то, что с помощью десятичных чисел проще было делать расчеты, новый метод распространялся не так быстро. Необходимо было преодолеть всякого рода сопротивление, прежде всего со стороны абацистов, счетоводов, которые на протяжении веков использовали счеты. Тем не менее, в конце концов алгористы, сторонники арабских цифр, победили.



ЛЕОНАРДО ПИЗАНСКИЙ — ФИБОНАЧЧИ (1170–1250)

Леонардо Пизанский родился в Пизе около 1170 г. Он более известен под прозвищем «сын Благонамеренного» (по-итальянски figlio di Bonacci).

Тем не менее, это лишь одна из версий происхождения его псевдонима. Не существует никаких доказательств, что он при жизни был известен как Фибоначчи. Ученый пришел в математику из торговли (его отец был купцом с международными связями).

Однако вскоре интерес Фибоначчи к математике вышел далеко за рамки торговли. Деловые поездки в Северную Африку дали ему возможность познакомиться с математическими работами мусульманских ученых, а именно, с индо-арабской системой счисления, заимствованной из Азии. Он сразу понял огромные преимущества этой системы над римскими цифрами. Фибоначчи стал ее убежденным сторонником и начал распространять ее по всей Европе. Именно благодаря прежде всего Фибоначчи западная культура сделала этот важный шаг вперед.



Гравюра 1504 г. из энциклопедии Margarita Philosophies Грегора Рейша иллюстрирует спор между абацистами (справа) и алгористами (слева). Из рисунка видно, что даже через три века после Фибоначчи спор о системах счисления был все еще в разгаре.


Наряду с введением новых символов и методов расчета «Книга абака» была посвящена теории чисел (например, разложению на простые множители и правилам делимости) и содержала первоклассные алгебраические задачи. Конечно, она содержала главы о ведении счетов, о распределении прибыли и убытков, а также об обмене денег. Но самым известным разделом книги является знаменитая задача о размножении кроликов, решение которой известно сегодня как последовательность Фибоначчи.

Задача формулируется следующим образом: «Сколько пар кроликов будет у нас через год, если в январе у нас была одна пара, которая каждый месяц производит на свет другую пару, начиная с марта пара, в свою очередь, производит собственное потомство каждый месяц, начиная со второго месяца».


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.