Золотое сечение. Математический язык красоты - [9]
МАРИО МЕРЦ (1925–2003)
Итальянский художник Марио Мерц, один из самых выдающихся представителей направления «арте повера», неоднократно использовал последовательность Фибоначчи во многих своих работах 1970-х гг., применяя целый ряд различных материалов (неоновые огни, ветки, шкуры животных, газеты). Так как числа Фибоначчи стремятся к бесконечности, потому что каждый следующий член равен сумме двух предыдущих, Мерц использовал это свойство знаменитой последовательности в качестве символа прогресса искусства и общества. Каждый шаг цивилизации — это сумма прошлых событий, в результате чего прошлое является неотъемлемой и важной частью будущего. Аналогично, современное искусство представляет собой сумму предшествующих искусств, ничто не может быть создано из ничего.
Работу Марио Мерца, изображающую последовательность Фибоначчи в виде спирали, можно увидеть на станции метро города Неаполя.
Существует бесконечное число пифагоровых троек, однако их нелегко найти. Но, как вы уже догадались, последовательность Фибоначчи позволяет найти пифагоровы тройки. Мы расскажем об этом в данном параграфе, но сначала покажем, какая существует связь между Фибоначчи, Пифагором и золотым сечением.
Самым известным свидетельством математического гения человечества является теорема Пифагора: в любом прямоугольном треугольнике квадрат длины большей стороны (гипотенузы) равен сумме квадратов длин двух других сторон (называемых катетами).
а>2 = Ь>2 + с>2.
С геометрической точки зрения мы можем рассматривать все стороны прямоугольного треугольника как стороны трех построенных на них квадратов. Площадь квадрата равна квадрату длины его стороны (квадрат имеет равные стороны). Теорема Пифагора просто говорит, что общая площадь квадратов, построенных на катетах прямоугольного треугольника (сумма площадей двух квадратов), равна площади квадрата, построенного на гипотенузе.
Эта формула позволяет нам определить тип треугольника, не измеряя его углов. Все, что нам нужно сделать, — это найти квадраты длин трех сторон и сравнить квадрат длины большей стороны с суммой квадратов длин двух других сторон. В случае равенства мы имеем прямоугольный треугольник. Если квадрат длины большей стороны больше, то треугольник является тупоугольным (наибольший угол больше 90°). Если сумма квадратов больше, то треугольник является остроугольным (все три угла меньше 90°).
Если мы построим квадрат на каждой стороне прямоугольного треугольника, то количество бумаги, необходимое для того, чтобы покрыть больший квадрат, будет таким же, как и количество бумаги, необходимое для покрытия двух меньших квадратов.
Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. Другими словами, пифагорова тройка — это три целых числа (а, b, с), удовлетворяющих условию:
a>2 = b>2 + c>2.
Теперь мы продемонстрируем метод нахождения пифагоровых троек с помощью последовательности Фибоначчи. Возьмем любые четыре последовательных числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:
1. Произведение двух крайних чисел: 2∙8 = 16;
2. Удвоенное произведение двух чисел в середине: 2∙(3∙5) = 30;
3. Сумма квадратов двух чисел в середине: З>2 + 5>2 = 34.
Мы можем легко убедиться, что эти три числа (34, 30, 16) образуют пифагорову тройку:
16>2 = 256; 30>2 = 900; 34>2 = 1156 => 256 + 900 = 1156.
Этот метод работает в любом случае для любых четырех последовательных чисел из последовательности Фибоначчи.
ЗНАЧЕНИЕ И РОЛЬ ПИФАГОРОВЫХ ТРОЕК
Самая известная пифагорова тройка — из наименьшего прямоугольного треугольника с целочисленными сторонами — это (5, 4, 3). Эти числа удовлетворяют соотношению:
3>2 + 4>2 = 5>2
На протяжении многих веков эта тройка использовалась в виде веревки с узелками, отмечающими три длины. На некоторых изображениях, сохранившихся со времен Древнего Египта, можно видеть людей, несущих моток такой веревки с узлами. Как они ее использовали? Считается, что веревка раскладывалась на земле в форме треугольника, а узлы использовались для разметки углов. Получалась фигура, стороны которой были пропорциональны 3, 4 и 5. Таким образом строился прямоугольный треугольник.
Веревки с узлами являлись быстрым способом построения прямого угла (90°). В Египте веревки с узлами использовались для построения перпендикулярных линий при разметке прямоугольных полей вдоль илистых берегов Нила. Эти отметки каждый год смывали паводковые воды. Также эти веревки использовались при обработке камня для египетских пирамид. В сущности, в виде этих простых веревок математика применялась во всех случаях жизни.
Три последовательных числа в последовательности Фибоначчи ведут себя предсказуемым образом. Выберем три любых последовательных числа и перемножим два крайних. Затем сравним результат с квадратом среднего числа. Разница всегда будет одинаковая, на единицу больше или меньше в зависимости от выбора чисел. Например, для чисел 3, 5 и 8 имеем 3∙8 = 5
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.