Живой учебник геометрии - [44]

Шрифт
Интервал

119. Вычислите объем и боковую поверхность правильной пятигранной пирамиды, сторона основания которой 45 см, а высота – 76 см.

Р е ш е н и е. Начнем с вычисления площади основания пирамиды, при чем воспользуемся тригонометрическими соотношениями. Площадь правильного пятиугольника со стороною 45 см равна 5 ? 45 ? ? l,

где l – апофема. Так как центральный угол, опирающийся на сторону правильного вписанного пятиугольника, = 360°/5 = 72°, то апофема l = 22, cotg 36° = 16 см. Следовательно, площадь основания пирамиды 5 45 8 = 1800 кв. см, а искомый объем = 1/31800 ? 76 = 45 600 куб. см.

Для вычисления боковой поверхности необходимо определить длину апофемы пирамиды. Из чертежа (сделайте его) видно, что апофема есть гипотенуза прямоугольного треугольника, катеты которого – высота пирамиды и апофема ее

основания. Значит, апофема пирамиды


Отсюда боковая поверхность пирамиды 6 ? 145 ? ? ?78 = 10 000 кв. см.

§ 89. Конус. Его боковая поверхность и объем

Вообразим, что прямоугольный треугольник ABC (черт. 239) вращается вокруг катета АВ, как дверь на петлях; вращаясь, он словно вырежет из пространства тело, называемое конусом. Круг, описанный катетом ВС, назы вается о с н о в а н и е м конуса, отрезок AS в ы с о т о ю конуса, а АСего образующей.

Чтобы найти правило для вычисления б о к о в о й п о в е р х н о с т и конуса, представим себе ее развернутой на плоскости (черт. 240). Получится сектор, радиус которого равен «образующей» конуса, а длина дуги – длине окружности основания конуса. Площадь этого сектора равна боковой поверхности конуса. Мы знаем, что площадь сектора (§ 63) равна длине его дуги, умноженной на половину радиуса. Следовательно,

б о к о в а я п о в е р х н о с т ь к о н у с а р а в н а п о л о в и н е п р о и з в е д е н и я д л и н ы е г о о к р у ж н о с т и н а о б р а з у ю щ у ю. Обозначив радиус основания конуса через R, а образующую через l, получаем для боковой поверхности Sконуса формулу:

S= ? ? 2?R ? l= ?Rl.

Правило вычисления объема конуса можно установить, рассматривая конус, как пирамиду с весьма большим числом боковых граней. Тогда можно применить к конусу правило вычисления объема пирамиды, заменив основание пирамиды основанием конуса, а ее высоту – высотой конуса. Для объема W конуса получим формулу

V = 1/3 ?R2h,

где R – радиус основания конуса.


Повторительные вопросы

Что называется конусом? – Что называется его основанием, высотою, образующей? – Как вычисляются боковая поверхность и объем конуса? – Как выражаются эти правила формулами?


Применения

120. Вычислить полную поверхность и объем конуса, диаметр основания которого 92 см, а образующая – 85 см. Р е ш е н и е. Полная поверхность этого конуса

? ? 46 ? 85 + ? ? 462= 19 000 кв. см.

Для определения объема конуса вычисляем его высоту. Она равна


Объем конуса

1/3 ? ? ? 462 ? 71 = 160 000 куб. см.


121. Куча песку имеет форму конуса, окружность основания которого 14 м, а высота – 2 м. Сколько возов песку в этой куче? На воз идет 0,3 куб. м песку.

16 Р е ш е н и е. Радиус основания конической кучи =16/2? = 2,6 м. Площадь основания 5,1 кв. м, и, следовательно, объем кучи = 1/3 ? 5,1 ? 2 = 3,4 куб. м. В куче 11 с лишним возов.

122. Из цилиндра с диаметром основания 23 см и высотою 19 см надо выточить конус вчетверо меньшего объема с диаметром основания 20 см. Вычислить высоту конуса и угол при вершине.

Р е ш е н и е. Объем цилиндра = 1/4 ? ? ? 232? 18 = 7500 куб. см. Значит, объем конуса = 1900 куб: см. Его высота x определяется из уравнения 1/3 ? ? ? 102? x = 1900, откуда x = 18 см. Высота конуса должна равняться высоте цилиндра.

Тангенс половины угла при вершине равен =10/18 = 0,56, откуда искомый угол = 58°.

§ 90. Шар. Его объем и поверхность

Шаром называется тело, которое можно представить себе образовавшимся от вращения полукруга около его диаметра (черт. 241). Все точки поверхности шара одинаково удалены от одной точки, называемой ц е н т р о м шара. Прямая, соединяющая центр шара с какой-нибудь точкой его поверхности, называется радиусом шара. Всякая прямая, соединяющая две точки его поверхности и проходящая через центр, называется д и а м е т р о м шара. Чтобы установить правило вычисления объема шара вообразим, что около полушара (черт. 242) описан цилиндр ABCD. Кроме того, вообразим себе конус, вершина которого в центре шара, а основание – совпадает с верхним основанием цилиндра.

Проведем теперь какую-нибудь плоскость, пересекающую все три тела параллельно основаниям цилиндра; эта плоскость MN(черт. 243) рассечет каждое из трех тел по кругу. Радиус круга, по которому рассечется цилиндр, есть PZ, полушар – PS, а конус – PK. Проведя радиус OSшара, имеем по теореме Пифагора [OS]2= [OP]2+ [PS]2.

Обозначим радиус основания цилиндра через R(он равен радиусу шара); радиус сечения полушара PSчерез h, радиус сечения конуса – через k. Тогда OS= OR= R; OP= PK= k(потому что противолежащие углы = 45°); PS= h. Написанное выше представим в виде

R2= k2+ h2.

Умножив все члены равенства на, имеем

R2= k2+ h2.

Равенство это означает, что площадь сечения нашего цилиндра [R2] равна площади сечения конуса [


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Математические головоломки

Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.


Рекомендуем почитать
Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!


Введение в криптографию

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Как три вектора один детерминант в нуль обратили

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.