Живой учебник геометрии - [43]

Шрифт
Интервал

и cotg нескольких углов и сравните ваши результаты с данными таблицы. – Как изменяется tg при изменении величины угла от 0° до 90°? – Чему равен cotg 0°? Чему равен tg 30°? tg 45°? tg 60°? Чему равны cotgэтих углов? Какая вообще зависимость между tg и cotg одного и того же угла? – Какие углы называются дополнительными? – Какая зависимость между tgострого угла и cotgдополнительного угла? Найдите по таблице tg 26°, tg 38°30’; tg 79°? cotg 83°? – Найдите угол, tgкоторого равен 0,08? 1,35? cotg которого = 2,3? 0,59? Приведите примеры задач, разрешаемых помощью tgили cotg.

Что называется синусом? h осину сом? Как они обозначаются? Определите с помощью чертежа sinи cosнескольких углов и проверьте ваш результат по таблице. Как изменяется sinи как изменяется cosпри изменении величины угла от 0° до 90°. Чему равен sin 45°? cos 45°? sin 30°? cos 30°? sin 60°? cos 60°? Какая зависимость между синусом острого угла и косинусом дополнительного угла? Найдите по таблице: sin 23°, sin 65°, cos 18°, cos 71°. Найдите углы, sin которых: 0,81; 0,13; 0,06; cos которых – 0,76; 0,18; 0,09. Приведите примени задач, разрешаемых с помощью sin или cos.

XV. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ О ТЕЛАХ

В §§ 34–37 и 40 мы познакомились с правилами вычисления поверхности и объема призм и цилиндра. Теперь рассмотрим несколько других тел, часто встречающихся на практике: так наз. «пирамиды», «конусы» и «шары».

§ 88. Пирамида. Ее боковая поверхность и объем

Пирамидой называется тело, ограниченное с одной стороны треугольником или каким-нибудь многоугол ьником (о с н о в а н и е пирамиды), а со всех других сторон – треугольниками, сходящимися в одной точке (в вершине пирамиды). Перпендикуляр, проведенный от вершины пирамиды к ее основанию, называется ее высотою (прямая называется п е р п е н д и к у л я р н о й к п л о с к о с т и, если она составляет прямые углы с каждой прямой, проведенной в этой плоскости через точку встречи). Если основание пирамиды – треугольник, пирамида называется «треугольной», если четырехугольник – «четырехугольной» и т. д. На черт. 238 изображены треугольная, четырехугольная и шестиугольная пирамиды.


Если мы начертим развертку какой-нибудь пирамиды (сделайте это), то установим способ вычисления ее б о к о в о й поверхности: надо вычислить площадь каждой боковой треугольной грани и все эти площади сложить. В том случае когда все боковые грани одинаковы (такая пирамида называется п р а в и л ь н о ю), вычисление упрощается: определяют площадь одной треугольной грани и умножают ее на число граней. Например, боковая поверхность правильной шестиугольной пирамиды равна 6 ? al/2 =3al,

где a– сторона шестиугольника, лежащего в основании пирамиды, а l – высота каждой треугольной грани; она называется «апофемой» правильной пирамиды. Для правильной пирамиды о nгранях боковая поверхность равна n ? al/2 = nal/2

Так как па – есть сумма сторон основания пирамиды, т. е. ее периметр, то правило вычисления боковой поверхности правильной пирамиды можно словесно высказать так:

б о к о в а я п о в е р х н о с т ь п р а в и л ь н о й п и р а м и д ы р а в н а п о л у п р о и з в е д е н и ю п е р и м е т р а о с н о в а н и я н а а п о ф е м у. Правило вычисления объема пирамиды выводится в подробных учебниках математики. Мы приведем его здесь без доказательства, так как доказательство это чересчур сложно:

о б ъ е м п и р а м и д ы р а в е н о д н о й т р е т и п р о и з в е д е н и я е е о с н о в а н и я н а в ыс о т у.

Обозначив площадь основания пирамиды через S, а высоту через A, получим такую формулу объема и пирамиды:

V= 1/3 Sh.


Повторительные вопросы

Что называется пирамидой? – Что называется основанием и что – вершиной? – Что называется высотою пирамиды? – Какая пирамида называется пятиугольной, десятиугольной, 12-угольной? – Какая пирамида называется правильной? – Что называется апофемой правильной пирамиды? – Припомните, что называется апофемой правильного многоугольника. – Как вычисляются боковая поверхность и объем правильной пирамиды? – Как выражаются эти правила формулами? – Как выражаются эти правила формулами?

Применения

117. Величайшая из пирамид Египта (пирамида Хеопса) достигала в высоту 146 метров; ее квадратное основание имело 233 метра в ширину. Предполагая, что она сплошь сложена из камней, вычислите, какой высоты каменную стену, толщиною в полметра и длиною от Ленинграда до Москвы, можно было бы соорудить из ее материала (расстояние – 640 километров).

Р е ш е н и е. Объем пирамиды равен

1/3 ?2332?146 куб. м.


Обозначив искомую высоту стены через x, имеем уравнение

6 400 000 ??? х = 1/32332-146, откуда х = 8,5 м.

118. Стог соломы имеет форму прямоугольного параллелепипеда с пирамидальной верхушкой. Размеры основания стога 6 Ч 6 м; высота до основания пирамиды – 4 м до верши-1 ны пирамиды – 5 м. Сколько килограммов соломы в этом стоге? Куб. метр соломы весит 100 кг.

Р е ш е н и е. Объем призматической части стога 6 ? 6 ? 4 = 144 куб. м. Объем пирамидальной части 1/3 ? 6 ? 6 = 12 куб. м. Общий объем 144 + 12 = 156 куб. м. В стоге 15 600 кг соломы.

119. Вычислите объем и боковую поверхность правильной пятигранной пирамиды, сторона основания которой 45 см, а высота – 76 см.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.