Живой учебник геометрии - [39]
в о в с я к и й п р а в и л ь н ы й м н о г о у г о л ь н и к м о ж н о в п и с а т ь к р у г. Центр круга, вписанного в многоугольник, называется ц е н т р о м э т о г о м н о г о у г о л ь н и к а, а радиус вписанного круга —
а п о ф е м о й м н о г о у г о л ь н и к а.
§ 82. Круг около правильного многоугольника
Сходными рассуждениями можно убедиться, что
о к о л о в с я к о г о п р а в и л ь н о г о м н о г о у г о л ь н и к а м о ж н о о п и с а т ь о к р у ж н о с т ь. Пусть имеется правильный многоугольник, часть которого ABCDEизображена на черт. 222. Проведем через середины М и Nдвух его соседних сторон перпендикуляры. Точку их пересечения О соединим со всеми вершинами многоугольника. Отрезки ОА, NB и ОС равны (почему?). Отсюда вытекает, что уг. 3 = уг. 4. Так как углы В и С многоугольника равны (почему?), то уг. 3 = уг. 5 и треугольники ОВС и О CD равны (СУС).
Таким же образом доказываем, что треугольник OCD равен треугольнику ODE– и т. д. Мы убеждаемся, что прямые, соединяющие точку О со всеми вершинами многоугольника равны, т. е. очка О есть центр описанного круга.
Совпадают ли центры обеих окружностей – описанной и вписанной? Нетрудно убедиться, что они должны совпадать. Стороны многоугольника служат хордами описанного круга и касательными вписанному. Мы знаем, что перпендикуляры к касательным точке касания должны проходить через центр вписанного круга. А через центр описанного должны проходить перпендикуляры, проведенные через середины хорд. Но как в данном случае те и другие перпендикуляры совпадают, то должны, конечно, совпадать и точки их пересечения, т. е. центр обоих кругов.
Повторительные вопросы к §§ 75–82
Какие прямоугольные фигуры называются вписанными? – Описанными? – Во всякий ли треугольник можно вписать окружность? А описать около него? Как это выполнить? – Как вписать в круг и описать около него квадрат? Правильный шестиугольник? Равносторонний треугольник? Чему равны стороны этих фигур, если считать радиус описанного около них круга известным? – Во всякий ли правильный многоугольник можно вписать круг? А описать около него? Совпадают ли центры обоих кругов? Как называется этот центр? – Как называется радиус круга, вписанного в правильный многоугольник?
Применения
97. Найти диаметр круглого обрубка, предназначенного для того, чтобы вытесать из него шестиугольную шашку для торцовой мостовой. Сторона шашки = 7 см.
Р е ш е н и е. Так как сторона правильного вписанного шестиугольника = радиусу описанного круга, то искомый диаметр круга = 14 см.
98. На черт. 223 изображен контур стропил так наз. мансардной крыши, Он начерчен так: полуокружность разделена на 4 равные части и точки деления соединены прямыми.
Определите длины СЕ u FD, если пролет AB = 10 м.
Р е ш е н и е. Дуга СЕ составляет 1/4 окружности; значит, хорда СЕ равна стороне вписанного квадрата. Так как радиус окружности известен (5 м), то длина СЕ =5 ?2 = 7м. Стрелка DFопределяется как разность GD– GF= 5 – 3,5 = 1,5 м.
99. В круге радиуса 100 см проведены две хорды, дуги которых 90° и 120°. На сколько сумма их длин отличается от длины полуокружности? Какой отсюда вытекает способ приближенного распрямления окружности?
Р е ш е н и е. Хорда дуги в 90° равна стороне вписанного квадрата = 100? ?2 = 141. Хорда дуги в 120° равна стороне вписанного равностороннего треугольника = 100 ??3 = 173.
Сумма их 141 + 173 = 314. Длина полуокружности радиуса 100 (при ? = 3,14) равна также 314. Значит, сумма этих хорд равна длине полуокружности до 4-й значащей цифры. Выпрямляя окружность, можно отложить на прямой две стороны вписанного квадрата и две стороны вписанного равностороннего треугольника.
100. Вычислить площадь заштрихованных частей фигуры черт. 224, если радиус круга = R.
Р е ш е н и е. Легко видеть, что каждая из трех заштрихованных частей представляет собою два сегмента, отсекаемых стороною правильного вписанного шестиугольника. Все три заштрихованные части равны по площади шести таким сегментам, т. е. разности между площадью круга и площадью вписанного в него правильного шестиугольника. Последняя площадь равна 6-кратной площади равностороннего треугольника со стороною R, т. е.
101. Какую долю площади наружного прямоугольника (черт. 225) составляет его заштрихованный участок.
Р е ш е н и е. Рассматривая чертеж, можно усмотреть, что заштрихованный участок представляет собою два сегмента, отсекаемые стороною такого вписанного многоугольника, апофема которого ?= радиуса. Обозначив радиус через R, имеем для длины этой стороны a выражение
очевидно, хорда есть сторона вписанного равностороннего треугольника. Площадь равностороннего треугольника со стороною а равна площадь круга радиуса R равна ?R2; отсюда площадь заштрихованной части
Так как площадь наружного прямоугольника = 2R2, то искомое отношение = 0,61.
§ 83. Площадь правильного многоугольника
Пусть у нас имеется правильный многоугольник о nсторонах. Чтобы определить его площадь, соединим его центр со всеми вершинами: многоугольник разделится на nравных треугольников (почему они равны?). Если сторона многоугольника
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.