Живой учебник геометрии - [39]
в о в с я к и й п р а в и л ь н ы й м н о г о у г о л ь н и к м о ж н о в п и с а т ь к р у г. Центр круга, вписанного в многоугольник, называется ц е н т р о м э т о г о м н о г о у г о л ь н и к а, а радиус вписанного круга —
а п о ф е м о й м н о г о у г о л ь н и к а.
§ 82. Круг около правильного многоугольника
Сходными рассуждениями можно убедиться, что
о к о л о в с я к о г о п р а в и л ь н о г о м н о г о у г о л ь н и к а м о ж н о о п и с а т ь о к р у ж н о с т ь. Пусть имеется правильный многоугольник, часть которого ABCDEизображена на черт. 222. Проведем через середины М и Nдвух его соседних сторон перпендикуляры. Точку их пересечения О соединим со всеми вершинами многоугольника. Отрезки ОА, NB и ОС равны (почему?). Отсюда вытекает, что уг. 3 = уг. 4. Так как углы В и С многоугольника равны (почему?), то уг. 3 = уг. 5 и треугольники ОВС и О CD равны (СУС).
Таким же образом доказываем, что треугольник OCD равен треугольнику ODE– и т. д. Мы убеждаемся, что прямые, соединяющие точку О со всеми вершинами многоугольника равны, т. е. очка О есть центр описанного круга.
Совпадают ли центры обеих окружностей – описанной и вписанной? Нетрудно убедиться, что они должны совпадать. Стороны многоугольника служат хордами описанного круга и касательными вписанному. Мы знаем, что перпендикуляры к касательным точке касания должны проходить через центр вписанного круга. А через центр описанного должны проходить перпендикуляры, проведенные через середины хорд. Но как в данном случае те и другие перпендикуляры совпадают, то должны, конечно, совпадать и точки их пересечения, т. е. центр обоих кругов.
Повторительные вопросы к §§ 75–82
Какие прямоугольные фигуры называются вписанными? – Описанными? – Во всякий ли треугольник можно вписать окружность? А описать около него? Как это выполнить? – Как вписать в круг и описать около него квадрат? Правильный шестиугольник? Равносторонний треугольник? Чему равны стороны этих фигур, если считать радиус описанного около них круга известным? – Во всякий ли правильный многоугольник можно вписать круг? А описать около него? Совпадают ли центры обоих кругов? Как называется этот центр? – Как называется радиус круга, вписанного в правильный многоугольник?
Применения
97. Найти диаметр круглого обрубка, предназначенного для того, чтобы вытесать из него шестиугольную шашку для торцовой мостовой. Сторона шашки = 7 см.
Р е ш е н и е. Так как сторона правильного вписанного шестиугольника = радиусу описанного круга, то искомый диаметр круга = 14 см.
98. На черт. 223 изображен контур стропил так наз. мансардной крыши, Он начерчен так: полуокружность разделена на 4 равные части и точки деления соединены прямыми.
Определите длины СЕ u FD, если пролет AB = 10 м.
Р е ш е н и е. Дуга СЕ составляет 1/4 окружности; значит, хорда СЕ равна стороне вписанного квадрата. Так как радиус окружности известен (5 м), то длина СЕ =5 ?2 = 7м. Стрелка DFопределяется как разность GD– GF= 5 – 3,5 = 1,5 м.
99. В круге радиуса 100 см проведены две хорды, дуги которых 90° и 120°. На сколько сумма их длин отличается от длины полуокружности? Какой отсюда вытекает способ приближенного распрямления окружности?
Р е ш е н и е. Хорда дуги в 90° равна стороне вписанного квадрата = 100? ?2 = 141. Хорда дуги в 120° равна стороне вписанного равностороннего треугольника = 100 ??3 = 173.
Сумма их 141 + 173 = 314. Длина полуокружности радиуса 100 (при ? = 3,14) равна также 314. Значит, сумма этих хорд равна длине полуокружности до 4-й значащей цифры. Выпрямляя окружность, можно отложить на прямой две стороны вписанного квадрата и две стороны вписанного равностороннего треугольника.
100. Вычислить площадь заштрихованных частей фигуры черт. 224, если радиус круга = R.
Р е ш е н и е. Легко видеть, что каждая из трех заштрихованных частей представляет собою два сегмента, отсекаемых стороною правильного вписанного шестиугольника. Все три заштрихованные части равны по площади шести таким сегментам, т. е. разности между площадью круга и площадью вписанного в него правильного шестиугольника. Последняя площадь равна 6-кратной площади равностороннего треугольника со стороною R, т. е.
101. Какую долю площади наружного прямоугольника (черт. 225) составляет его заштрихованный участок.
Р е ш е н и е. Рассматривая чертеж, можно усмотреть, что заштрихованный участок представляет собою два сегмента, отсекаемые стороною такого вписанного многоугольника, апофема которого ?= радиуса. Обозначив радиус через R, имеем для длины этой стороны a выражение
очевидно, хорда есть сторона вписанного равностороннего треугольника. Площадь равностороннего треугольника со стороною а равна площадь круга радиуса R равна ?R2; отсюда площадь заштрихованной части
Так как площадь наружного прямоугольника = 2R2, то искомое отношение = 0,61.
§ 83. Площадь правильного многоугольника
Пусть у нас имеется правильный многоугольник о nсторонах. Чтобы определить его площадь, соединим его центр со всеми вершинами: многоугольник разделится на nравных треугольников (почему они равны?). Если сторона многоугольника
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости», — несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе и т. п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?», — и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ.