Живой учебник геометрии - [40]
n?? аl= ? nal.
Это и есть формула для вычисления площади правильного многоугольника. Ее можно несколько видоизменить, если принять во внимание, что na – есть сумма сторон многоугольника, т. е. его периметр P. Поэтому полученную сейчас формулу можно представить в таком виде:
S= ?Pl.
Словесно правило вычисления площади правильного многоугольника можно высказать так:
п л о щ а д ь п р а в и л ь н о г о м н о г о у г о л ь н и к а р а в н а п о л о в и н е п р о и з в е д е н и я е г о п е р и м е т р а н а а п о ф е м у.
Применения
102. Какова должна быть сторона шестиугольной шашки торцовой мостовой, чтобы на 1 кв. метр шло 30 шашек?
Р е ш е н и е. Если искомая сторона шашки x, то площадь
основания = 6x1/2 апофемы. Апофема =x?3/2 следовательно площадь = 6x?x?3/4=3x2?3/4 30 таких площадей равны 1 кв. м =10 000 кв. см. Имеем уравнение
30 ? 3x2?3/4 =10 000, откуда х = около 27 см.
103. Чему равна площадь сегмента, отсекаемого хордой равной радиусу R круга.
XIV. НАЧАЛЬНЫЕ СВЕДЕНИЯ ИЗ ТРИГОНОМЕТРИИ
§ 84. Конусность. Тангенс и котангенс острого угла
О круглых изделиях, суживающихся по прямой линии к одному концу, говорят, что они имеют «конусность». Конусность измеряется величиною уменьшения радиуса круга поперечного сечения на каждый сантиметр длины изделий. Если, например, радиус круга поперечного сечения изделия уменьшается с каждым сантиметром на 0,25 мм, то конусность изделия равна 0,25 мм на 1 см.
Легко рассчитать, что если длина изделия – 40 см, то от одного конца к другому оно суживается на 2 0,25 мм 40 = = 20 мм = 2 см. Наоборот, если круглое изделие в 50 см длины имеет на концах разность толщины (диаметров) 30 мм, то на каждый сантиметр длины разность диаметров составляет 30 мм: 50 = 0,6 мм, а разность радиусов – 0,3 мм; значит «конусность» этого изделия 0,3 мм на 1 см (или 0,3: 10 = 0,03).
Итак, конусность измеряется отношением катетов (черт. 227) ВС : АС в прямоугольном треугольнике АВС. Это отношение определяет наклон прямой АВ к LCи, следовательно, может служить мерою угла ВАС.
Мы видим из этого примера, что кроме уже известного нам градусного способа измерения острых углов, можно пользоваться еще и другим способом. Способ этот состоит в том, что за меру острого угла принимают отношение противолежащего ему катета к прилежащему катету в том треугольнике, который отсекается от этого угла перпендикуляром к одной из сторон. Например, угол А (черт. 228) можно измерять отношением ВС : АВ или равным ему отношением ED: AE (почему эти отношения равны?), или также равным им отношением MN: AN (почему это отношение равно предыдущим?). Каждое из этих равных отношений называется т а н г е н с о м угла A и обозначается через tang или tg.
Легко понять, что каждому острому углу отвечает определенный тангенс. Найти значение тангенса для каждого угла возможно помощью чертежа, измерив длину соответствующих линий и вычислив их отношение. Таким путем можно составить таблицу тангенсов для всех углов от 1° до 10°. Способ этот прост, но не достаточно точен. Существуют способы (чересчур сложные, чтобы их рассматривать здесь) узнавать тангенсы с любою точностью посредством вычислений. Готовая таблица вычисленных таким путем тангенсов для всех острых углов от 0°до 90° приложена в конце книги (вместе с некоторыми другими величинами, о которых речь будет дальше).
Если станем изменять величину угла от 0° до 90° и следить, как изменяется при этом величина тангенса, то заметим следующее. Когда угол близок к 0°, то и тангенс близок к нулю; поэтому условно пишут, что tg0° = 0. С увеличением угла tgего быстро возрастает, а при 90° перпендикуляр к одной стороне угла вовсе не встречает другой: точка пересечения, как говорят, «удаляется в бесконечность». Поэтому считают, что tg90 ° = бесконечности.
Для некоторых углов можно вычислить тангенс весьма несложным расчетом. Например, тангенс угла в 45° равен (черт. 229) ВС : АВ = 1 (почему?). Тангенс угла в 30° (черт. 230) равен ВС: АВ; но в треугольнике АСВ
Вместо отношения противолежащего катета к прилежащему можно для измерения острых углов брать и обратное отношение прилежащего катета к противолежащему. Это отношение называется к о т а н г е н с о м угла и обозначается знаком cotg. Из черт. 228 имеем:
Вообще между тангенсом и котангенсом существует следующая зависимость:
Легко сообразить, что с увеличением угла тангенс его увеличивается, а котангенс – уменьшается.
Рассмотрим еще одну зависимость между величиною тангенса и котангенса острых углов. Из прямоугольного треугольника АВС (черт. 231) видим:
А так как сумма углов А и В равна 90° (эти углы, как принято говорить, «дополнительные»), то tg А= cotg (90 – A); cotg A = tg (90 – А).
Например:
tg30° = cotg60°; tg17° = cotg73° и т. п.
Выражая эту зависимость словесно, устанавливаем правило:
т а н г е н с о с т р о г о у г л а р а в е н к о т а н г е н с у д о п о л н и т е л ь н о г о у г л а.
На этом основании таблицу тангенсов и таблицу котангенсов углов можно свести в одну таблицу, устройство которой мы сейчас объясним.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.