Живой учебник геометрии - [37]
Применения
91. Чтобы определить расстояние от точки В (черт. 210) до недоступной точки Aпровешивают прямую BN под прямым углом к направлению АВ и из произвольной точки С этой прямой провешивают CD перпендикулярно к направлению AC? Как, пользуясь этим построением, определить искомое расстояние АВ?
Р е ш е н и е. Надо измерить расстояния ВС и ВD. Расстояние АВ оп-редется из равенства:
(BC)2= AB?BD,
откуда
AB = (BC)2/BD
92. Начертить квадрат, равновеликий данному треугольнику с основанием а высотою h.
Р е ш е н и е. Задача сводится к отысканию стороны квадрата такой длины х, чтобы x2= ?ah, т. е., чтобы a/2: х = х : h.
Отсюда видно, что искомый отрезок средне-пропорциональное между a/2 и h.
93. Найти стрелку h дуги (черт. 211) радиуса R, если длина стягивающей хорды = a.
Р е ш е н и е. Стрелкой дуги называется прилегающий к ней отрезок радиуса, перпендикулярного к стягивающей ее хорде, между хордой и дугой.
Половину хорды a/2 можно рассматривать, как перпендикуляр, проведенный из точки окружности к диаметру. Поэтому
(a/2)2h?[2R-h], или: h2-2Rh + a2/4 = 0
Искомую величину стрелки h можно вычислить из этого квадратного уравнения. Если стрелка, как часто бывает, весьма мала по сравнению с радиусом круга, то членом h2можно пренебречь, и тогда h приближенно равно a2/8R. По этой формуле вычисляют, например, стрелку дуги железнодорожного закругления, радиус которого достигает 1000 метров и больше, стрелка же не превышает нескольких, метров.
Сходным образом решается и обратная задача: вычисление радиуса закругления по длине хорды и стрелки, как видно из следующего примера.
94. Вычислить радиус кривизны часового стекла, поперечник которого 60 мм, а стрелка дуги – 3 мм.
Р е ш е н и е. Подставив значения aи hв уравнение, выведенное в предыдущем примере:
h2-2Rh + a2/4 = 0
получаем
0,32-2R?0,3 + 9 = 0.
Отсюда R = около 6 см.
§ 74. Длина касательной
Пусть требуется определить длину касательной к (черт. 212), если радиус круга R, а кратчайшее расстояние от начала касательной до окружности – b. Проведя радиус к точке касания, имеем прямоугольный треугольник, в котором
[b+ R]2= R2+ k2.
Раскрыв скобки, получаем
b2+ 2bR+ R2= R2+ k2.
Отсюда
k2= b2+ 2bR = b [b + 2R2].
Это соотношение можно выразить словесно так:
к в а д р а т к а с а т е л ь н о й р а в е н п р о и з в е д е н и ю в с е й т е к у щ е й, п р о в е д е н н о й и з н а ч а л а к а с а т е л ь н о й ч е р е з ц е н т р, н а в н е ш н и й о т р е з о к э т о й с е к у щ е й.
Применения
95. Как далеко можно видеть в море с маяка высотою 30 метров?
Р е ш е н и е. Так как поверхность моря шарообразна, то дальность видимости определяется длиной касательной, проведенной из верхушки маяка к кругу, радиус которого равен радиусу земного шара (6400 км). Поэтому искомая даль-ность х определяется из равенства
x2= 30 [12 800 000 + 30].
(Слагаемым 30 в данном случае можно пренебречь). Получаем х = около 20 км.
96. Как высоко должен подняться летчик, чтобы видеть за 200 километров?
Р е ш е н и е. В этом случае, в отличие от предыдущего, известна длина касательной, и ищется внешний отрезок секущей, проходящей через центр круга радиус которого 6400 км. Поэтому искомая высота у определяется из уравнения
2002= у [12 800 + y].
Слагаемое у, очевидно, весьма мало по сравнению с диаметром земного шара. Пренебрегая им, имеем
2002= 12 800 у,
Откуда
2002/12800 = 2,3 км.
Следовательно, искомая высота = 23 км.
XIII. ВПИСАННЫЕ И ОПИСАННЫЕ ФИГУРЫ
§ 75. Определения
Треугольник или многоугольник называется вписанным в окружность, если все их вершины расположены на окружности (черт. 217). Они называются описанными около круга, если в с е и х с т о р о н ы касаются окружности (черт. 213). Сейчас мы познакомимся с некоторыми свойствами описанных и вписанных фигур.
§ 76. Как описать окружность около данного треугольника
Предварительное упражнение
Во скольких точках могут пересечься три прямые линии?
Докажем сначала, что описать окружность можно около всякого треугольника, какой бы формы он ни был. Пусть у нас имеется треугольник ABC(черт. 214). Около него можно будет описать окружность, если удастся найти такую точку О, которая одинаково удалена от трёх его вершин A, В и С. Найдем сначала все точки, одинаково удаленные от точек А и В; они расположены, мы знаем (§ 55) на перпендикуляре Dd(черт. 215),
проведенном через середину стороны АВ. Затем найдем все точки, одинаково удаленные от вершин В и С; они расположены на перпендикуляре Ее, проведенном через середину ВС. Точка О их пересечения одинаково удалена от трех вершин треугольника А, В и С, а следовательно, это и есть центр описанной окружности.
Так как подобное рассуждение применимо ко всякому треугольнику, то не существует такого треугольника, около которого нельзя было бы описать окружности. Способ же построения ее вытекает из сказанного: надо провести перпендикуляры через середины двух сторон треугольника; точка пересечения перпендикуляров есть центр описанной окружности; соединив ее с одной. из вершин треугольника, найдем радиус этой окружности. Итак:
о к о л о в с я к о г о т р е у г о л ь н и к а м о ж н о о п и с а т ь о к р у ж н о с т ь; ц е н т р е е л е ж и т н а п е р е с е ч е н и и п е р п е н д и к у л я р о в, п р о в е д е н н ы х ч е р е з с е р е д и н у д в у х с т о р о н т р е у г о л ь н и к а. Попутно мы можем установить следующее свойство треугольника. Так как точка пересечения перпендикуляров, проведенных через середины двух сторон треугольника, одинаково удалена от концов третьей стороны, то она должна находиться и на перпендикуляре, проведенном через середину этой стороны треугольника. Значит: п е р п е н д и к у л я р ы, п р о в е д е н н ы е ч е р е з с е р е д и н ы т р е х с т о р о н т р е у г о л ь н и к а, п е р е с е к а ю т с я в о д н о й т о ч к е.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.