Живой учебник геометрии - [37]
Применения
91. Чтобы определить расстояние от точки В (черт. 210) до недоступной точки Aпровешивают прямую BN под прямым углом к направлению АВ и из произвольной точки С этой прямой провешивают CD перпендикулярно к направлению AC? Как, пользуясь этим построением, определить искомое расстояние АВ?
Р е ш е н и е. Надо измерить расстояния ВС и ВD. Расстояние АВ оп-редется из равенства:
(BC)2= AB?BD,
откуда
AB = (BC)2/BD
92. Начертить квадрат, равновеликий данному треугольнику с основанием а высотою h.
Р е ш е н и е. Задача сводится к отысканию стороны квадрата такой длины х, чтобы x2= ?ah, т. е., чтобы a/2: х = х : h.
Отсюда видно, что искомый отрезок средне-пропорциональное между a/2 и h.
93. Найти стрелку h дуги (черт. 211) радиуса R, если длина стягивающей хорды = a.
Р е ш е н и е. Стрелкой дуги называется прилегающий к ней отрезок радиуса, перпендикулярного к стягивающей ее хорде, между хордой и дугой.
Половину хорды a/2 можно рассматривать, как перпендикуляр, проведенный из точки окружности к диаметру. Поэтому
(a/2)2h?[2R-h], или: h2-2Rh + a2/4 = 0
Искомую величину стрелки h можно вычислить из этого квадратного уравнения. Если стрелка, как часто бывает, весьма мала по сравнению с радиусом круга, то членом h2можно пренебречь, и тогда h приближенно равно a2/8R. По этой формуле вычисляют, например, стрелку дуги железнодорожного закругления, радиус которого достигает 1000 метров и больше, стрелка же не превышает нескольких, метров.
Сходным образом решается и обратная задача: вычисление радиуса закругления по длине хорды и стрелки, как видно из следующего примера.
94. Вычислить радиус кривизны часового стекла, поперечник которого 60 мм, а стрелка дуги – 3 мм.
Р е ш е н и е. Подставив значения aи hв уравнение, выведенное в предыдущем примере:
h2-2Rh + a2/4 = 0
получаем
0,32-2R?0,3 + 9 = 0.
Отсюда R = около 6 см.
§ 74. Длина касательной
Пусть требуется определить длину касательной к (черт. 212), если радиус круга R, а кратчайшее расстояние от начала касательной до окружности – b. Проведя радиус к точке касания, имеем прямоугольный треугольник, в котором
[b+ R]2= R2+ k2.
Раскрыв скобки, получаем
b2+ 2bR+ R2= R2+ k2.
Отсюда
k2= b2+ 2bR = b [b + 2R2].
Это соотношение можно выразить словесно так:
к в а д р а т к а с а т е л ь н о й р а в е н п р о и з в е д е н и ю в с е й т е к у щ е й, п р о в е д е н н о й и з н а ч а л а к а с а т е л ь н о й ч е р е з ц е н т р, н а в н е ш н и й о т р е з о к э т о й с е к у щ е й.
Применения
95. Как далеко можно видеть в море с маяка высотою 30 метров?
Р е ш е н и е. Так как поверхность моря шарообразна, то дальность видимости определяется длиной касательной, проведенной из верхушки маяка к кругу, радиус которого равен радиусу земного шара (6400 км). Поэтому искомая даль-ность х определяется из равенства
x2= 30 [12 800 000 + 30].
(Слагаемым 30 в данном случае можно пренебречь). Получаем х = около 20 км.
96. Как высоко должен подняться летчик, чтобы видеть за 200 километров?
Р е ш е н и е. В этом случае, в отличие от предыдущего, известна длина касательной, и ищется внешний отрезок секущей, проходящей через центр круга радиус которого 6400 км. Поэтому искомая высота у определяется из уравнения
2002= у [12 800 + y].
Слагаемое у, очевидно, весьма мало по сравнению с диаметром земного шара. Пренебрегая им, имеем
2002= 12 800 у,
Откуда
2002/12800 = 2,3 км.
Следовательно, искомая высота = 23 км.
XIII. ВПИСАННЫЕ И ОПИСАННЫЕ ФИГУРЫ
§ 75. Определения
Треугольник или многоугольник называется вписанным в окружность, если все их вершины расположены на окружности (черт. 217). Они называются описанными около круга, если в с е и х с т о р о н ы касаются окружности (черт. 213). Сейчас мы познакомимся с некоторыми свойствами описанных и вписанных фигур.
§ 76. Как описать окружность около данного треугольника
Предварительное упражнение
Во скольких точках могут пересечься три прямые линии?
Докажем сначала, что описать окружность можно около всякого треугольника, какой бы формы он ни был. Пусть у нас имеется треугольник ABC(черт. 214). Около него можно будет описать окружность, если удастся найти такую точку О, которая одинаково удалена от трёх его вершин A, В и С. Найдем сначала все точки, одинаково удаленные от точек А и В; они расположены, мы знаем (§ 55) на перпендикуляре Dd(черт. 215),
проведенном через середину стороны АВ. Затем найдем все точки, одинаково удаленные от вершин В и С; они расположены на перпендикуляре Ее, проведенном через середину ВС. Точка О их пересечения одинаково удалена от трех вершин треугольника А, В и С, а следовательно, это и есть центр описанной окружности.
Так как подобное рассуждение применимо ко всякому треугольнику, то не существует такого треугольника, около которого нельзя было бы описать окружности. Способ же построения ее вытекает из сказанного: надо провести перпендикуляры через середины двух сторон треугольника; точка пересечения перпендикуляров есть центр описанной окружности; соединив ее с одной. из вершин треугольника, найдем радиус этой окружности. Итак:
о к о л о в с я к о г о т р е у г о л ь н и к а м о ж н о о п и с а т ь о к р у ж н о с т ь; ц е н т р е е л е ж и т н а п е р е с е ч е н и и п е р п е н д и к у л я р о в, п р о в е д е н н ы х ч е р е з с е р е д и н у д в у х с т о р о н т р е у г о л ь н и к а. Попутно мы можем установить следующее свойство треугольника. Так как точка пересечения перпендикуляров, проведенных через середины двух сторон треугольника, одинаково удалена от концов третьей стороны, то она должна находиться и на перпендикуляре, проведенном через середину этой стороны треугольника. Значит: п е р п е н д и к у л я р ы, п р о в е д е н н ы е ч е р е з с е р е д и н ы т р е х с т о р о н т р е у г о л ь н и к а, п е р е с е к а ю т с я в о д н о й т о ч к е.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости», — несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе и т. п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?», — и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ.