Занимательная математика - [20]

Шрифт
Интервал

Кирпичики

На одного из завсегдатаев клуба логика рассуждений Николаса произвела столь сильное впечатление, что он предложил принять Николаса в члены клуба и предоставить тем самым юному дарованию возможность играть в шашки. Другой завсегдатай клуба решительно возражал против принятия Николаса в члены клуба, ссылаясь на то, что тот «еще мал для этого» и что ему более пристало по возрасту играть в детские игры.

— Лучше всего в кубики, — с презрительной усмешкой добавил он.

Другой член клуба, относившийся к юному Николасу с большой симпатией, заметил:

— Кстати, о кубиках, джентльмены. Я вспомнил об одной задачке. Требуется возвести некоторое сооружение, используя в качестве кирпичей домино. Мне кажется, что эта задачка могла бы представить для вас определенный интерес.

— Не думаю, чтобы нам стоило тратить время и выслушивать какие-то задачки о возведении игрушечных сооружений из домино, — возразил другой член клуба с плохо скрытым отвращением.

— Но почему бы вам не выслушать задачку? — настаивал первый. — Вдруг она вам понравится.

Предположим, что у вас имеется неограниченный запас домино. Задача состоит в том, чтобы построить из домино столбик, верх которого образует как можно длинный «козырек», т. е. смещен на максимальное расстояние относительно основания. Вы вольны сдвигать каждое домино относительно предыдущего на сколько угодно большое или малое расстояние. Важно лишь, чтобы весь столб был устойчив и не опрокидывался.

Сразу же было высказано несколько догадок относительно того, сколь велик может быть «козырек». Оценки колебались от половины до целого домино (по длине).

— Должен огорчить вас, джентльмены, — заявил с улыбкой член клуба, отстаивавший Николаса, — но я не слышу ни одного правильного ответа.

— А какой же, по-вашему, длины может быть козырек? — спросили его с нетерпением завсегдатаи клуба.

— Как ни странно это звучит, джентльмены, — последовал невозмутимый ответ, — но козырек можно построить любой длины.

— Не верим! — в один голос воскликнули присутствовавшие. — Докажите!

— А что ты думаешь по этому поводу, Николас? — спросил у юного Николаса его сторонник.



— Задача решается очень просто, — ответил юный Николас. — Устойчивость в столбике можно анализировать начиная с верхнего домино и постепенно, шаг за шагом, спускаясь ниже. Максимальный сдвиг верхнего домино относительно домино, лежащего непосредственно под ним (второго сверхуj, равен половине домино, поэтому центр тяжести верхнего домино приходится на грань второго сверху домино.

Итак, сдвиг на половину длины домино у нас уже есть. Выясним теперь, где находится центр тяжести двух верхних домино. Если мы попытаемся водрузить два верхних домино поверх третьего, то обнаружим, что общий центр тяжести находится на расстоянии, равном 1/4 длины домино, от покрытого сверху конца среднего домино. Поэтому два верхних домино мы можем водрузить поверх третьего сверху домино с дополнительным сдвигом, равным 1/4 длины домино.



Вычислив центр тяжести трех верхних домино, мы обнаружим, что он находится на расстоянии, равном 1/6 от покрытого двумя верхними домино конца третьего домино. Продолжая этот процесс, мы обнаружим, что полный сдвиг оказывается равным



и т. д. до бесконечности.

— Все ли здесь корректно математически? — спросил один из завсегдатаев клуба у того члена клуба, который сформулировал задачу и, как оказалось, был математиком.

— Все корректно, — заверил математик других членов клуба. — Написанную Николасом формулу можно представить в виде



Сумма в квадратных скобках известна под названием гармонического ряда. Он расходится; под этим я имею в виду, что, суммируя ряд, мы можем превзойти любое наперед заданное число. Проще всего убедиться в этом, объединив члены ряда в группы, сумма членов в каждой из которых больше 1/2. Действительно, разобьем члены ряда на группы следующим образом:



Нетрудно видеть, что сумма членов в каждой группе больше 1/2, то есть 1/3 + 1/4 больше, чем 1/4 + 1/4 = 1/2, 1/5 + 1/6 + 1/7 + 1/8 больше, чем 1/8 + 1/8 + 1/8 + 1/8 = 1/2 и т. д.

Вы видите, джентльмены, что, задав длину «козырька», т. е. величину сдвига, вы можете без особого труда вычислить из скольких домино вам придется возвести столб, если воспользуетесь формулой, предложенной юным Николасом. Я вел свои расчеты сверху вниз, но строить столб из домино вам, разумеется, придется как обычно, снизу вверх.

Разноцветные нити

Задачи о покрытии шахматной доски домино и о сооружении «козырька» из домино настолько захватили членов «Клуба любителей шахмат и шашек», что они стали посматривать друг на друга, не найдется ли у кого-нибудь еще интересной задачки. Молчание решился прервать юный Николас.

— У меня есть еще одна задача, которая, возможно, заинтересует вас, джентльмены, — произнес он.

— Выкладывай свою задачку, тебе слово, — предложили члены клуба. На этот раз они явно поверили в способности юного Николаса.

— Предположим, что в каждую из четырех стен этой комнаты вбито по одному гвоздю и что, кроме того, по одному гвоздю вбито в ее пол и потолок. Между этими гвоздями требуется натянуть нити. От каждого гвоздя ко всем другим должно быть протянуто по нити. Нити имеются двух цветов — красные и синие. Каждая нить, натянутая между любыми двумя гвоздями, либо красная, либо синяя.


Еще от автора Георгий Антонович Гамов
Приключения Мистера Томпкинса

В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.


Сердце по другую сторону

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.