Занимательная математика - [21]
Нити образуют много треугольников, т. е. любые три гвоздя можно рассматривать как вершины некоторого треугольника, а нити, натянутые между этими тремя гвоздями, — как стороны треугольника. Задача заключается в том, чтобы выяснить, можно ли выбрать цвета нитей так, чтобы ни у одного треугольника все три стороны не были одного цвета.
— Очень трудная задача, — задумчиво произнес математик. — Необходимо произвести комбинаторные расчеты, вычислить перестановки, сочетания и т. п. Не думаю, чтобы ты основательно разбирался во всей этой алгебре, Ник.
— А я и не разбираюсь, сэр, — почтительно ответил юный Ник, — но тем не менее могу решить эту задачу.
— Может быть, — согласился математик. — Тогда расскажи нам, как она решается.
— На самом деле задача решается очень просто, — ответил юный Николас. — Необходимо только знать, с чего начать.
Прежде всего скажу вам ответ задачи: всегда найдется по крайней мере один треугольник, все стороны которого одного цвета. Попробую доказать, почему это так.
Рассмотрим любой гвоздь. От него к другим гвоздям должны быть протянуты пять нитей. Какие бы цвета вы ни выбрали, по крайней мере три из них должны быть одного цвета, так как нити могут быть только двух цветов — либо синие, либо красные. Для конкретности предположим, что три нити красные.
Рассмотрим теперь те три гвоздя, которые образуют вершины треугольника, между которыми протянуты эти нити.
Если мы хотим, чтобы три стороны любого треугольника не были одного цвета, то нити, натянутые между этими тремя гвоздями, не должны быть одного цвета. Попросту говоря, все стороны треугольника, к вершинам которого протянуты три красные нити, не могут быть синими. По крайней мере одна из сторон должна быть красной. Но тогда она замыкает треугольник, все стороны которого красные, а одна из вершин совпадает с исходным гвоздем.
6. Яхт-клуб
Под парусом в безветренную погоду
Однажды летом в жаркий безветренный полдень на веранде яхт- клуба собралось несколько яхтсменов. Они потягивали джин с тоником и лениво переговаривались между собой.
— Без ветра под парусом особенно не походишь, — философски заметил один из них.
— Не скажи! Иногда и в безветрие можно исхитриться, — возразил другой яхтсмен. — Как сейчас помню, однажды я прошел под парусом в полный штиль довольно приличную дистанцию.
— Штиль действительно был полным? Ни малейшего дуновения ветерка?
— Именно так!
— А как же ты управлялся с парусом?
— Как обычно.
— Может быть, ты дул себе в парус? Что ты делал?
— Ничего особенного. Я же говорю, что шел под парусом, как обычно. Чтобы было понятнее, я скажу несколько слов об обстановке. Я находился на небольшой яхте посредине реки, когда ветер внезапно упал. Ни весел, ни двигателя на яхте не было, и меня стало сносить по течению. Примерно в ста ярдах[10] прямо по курсу я увидел небольшую гребную лодку. Весла торчали по обе стороны ее корпуса, но сама лодка была пуста. Если бы мне удалось добраться до этой лодки, то я смог бы отбуксировать яхту в то место, куда направлялся. Но как преодолеть эти сто ярдов? Так как наступил полный штиль, лодку и яхту сносило вниз по течению реки с одинаковой скоростью, и расстояние между ними не сокращалось ни на дюйм[11].
— И что же ты сделал?
— Попробуй догадаться.
— Не знаю, что и думать. Вроде бы в полный штиль без весел нельзя плыть по течению быстрее, чем само течение.
— Оказывается, можно. Я сказал, что стоял полный штиль, имея в виду, что воздух был неподвижен относительно суши. Но поскольку яхту сносило вниз по течению, относительно яхты дул едва заметный бриз, направленный против течения. Ситуация была такой же, как если бы я находился на озере, а легкий ветер дул со стороны неподвижной гребной лодки. Поэтому я стал галсировать против встречного ветра и благополучно добрался до лодки.
Лодка и бутылка
— Твое решение задачи о лодке звучит прямо как специальная теория относительности Эйнштейна, — заметил один из яхтсменов.
— Речь идет всего лишь об относительном движении. В этом ты прав, но до специальной теории относительности очень далеко, — возразил другой яхтсмен, большой любитель научно-популярной литературы. — Но этот случай напомнил мне другую историю, в которой важную роль играет, какую систему координат выбрать для описания явлений.
Однажды некто греб в лодке по реке против течения. На носу лодки стояла наполовину уже пустая бутылка отличного виски. Когда гребец проплывал под мостом, лодку слегка качнуло, и бутылка упала за борт. Не заметив пропажи, человек в лодке продолжал грести против течения, а бутылка между тем поплыла по течению. Через 20 минут человек заметил, что бутылка исчезла, повернул назад (временем, необходимым для совершения поворота, можно пренебречь) и поплыл вдогонку за бутылкой. Будучи от природы флегматичным, он продолжал грести в том же темпе, в каком греб против течения, но если его скорость относительно берегов до поворота была равна разности между скоростью лодки и скоростью течения, то теперь она стала равна сумме тех же скоростей. По прошествии некоторого времени гребец увидел бутылку и подобрал ее в одной миле
В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.