Занимательная математика - [14]
— Но я не понимаю, — возразил мистер Джонсон. — Если вероятность встретить поезд, идущий на восток, в три раза больше вероятности встретить поезд, идущий на запад, то разве не следует из этого математически, что поездов, идущих на восток, должно быть больше? Я не очень силен в математике, но такой вывод представляется мне естественным.
— Нет, вы заблуждаетесь, — улыбнулся врач. — Ну как вы не поймете? Первый поезд с большей вероятностью пройдет мимо вас на восток потому, что вероятность вашего появления на переезде в промежутке между поездом на запад и поездом на восток больше, чем вероятностъ появления в промежутке между поездом на восток и поездом на запад. Правда, ждать поезда в первом случае вам приходится гораздо дольше, чем во втором.
— Как так? — воскликнул окончательно запутавшийся машинист. — Что значит «ждать дольше»?
— Сейчас вам все станет ясно, — терпеливо продолжал объяснять врач. — Если вы приходите к переезду в первую четверть часа, то первым мимо вас проходит поезд на запад и ждать вам придется не более пятнадцати минут. Более того, реальное время ожидания составит в среднем всего лишь семь с половиной минут. С другой стороны, если вы опоздаете к поезду, идущему на запад, то вам придется в течение почти сорока пяти минут ждать, пока пройдет поезд на восток. Таким образом, хотя вероятность, что первым мимо вас проследует поезд на восток, в три раза больше, чем вероятность, что первым пройдет поезд на запад, поезда на восток вам придется ждать втрое дольше, что в какой-то мере уравнивает шансы.
Может быть, отношение числа поездов, идущих на восток, к числу поездов, идущих на запад, и не будет в точности совпадать с отношением четверти часа к трем четвертям, но я ничуть не сомневаюсь, что, просмотрев свой перечень случайно выбранных моментов времени, вы обнаружите отношение, близкое к названному. Такова общая схема событий. Если количество поездов, идущих на восток и на запад, одинаково, то ваши наблюдения, производимые достаточно долго, могут привести только к одному результату: поезда, идущие в восточном направлении, будут встречаться чаще, чем поезда, идущие в западном направлении. Лишь бы интервал от каждого поезда, идущего на восток, до поезда, идущего на запад, был короче, чем интервал от каждого поезда, идущего на запад, до поезда, идущего на восток.
— Мне нужно хорошенько все это обдумать, — произнес мистер Джонсон, почесав в затылке. — Значит, по-вашему, все дело в расписании поездов?
— Если хотите, разгадку мучившей вас загадки можно изложить иначе, не упоминая ни словом о расписании, — предложил врач[5]. — Возьмем, например, один-единственный поезд «Суперчиф», курсирующий между Чикаго и Лос-Анджелесом. Предположим, что мы находимся в пятистах милях от Чикаго и в тысяче пятистах милях от Лос-Анджелеса[6] и что вы приходите к переезду в случайно выбранные моменты времени. Где с наибольшей вероятностью находится в этот момент поезд?
Так как до Лос-Анджелеса втрое дальше, чем до Чикаго, то шансы 3: 1 за то, что поезд находится к западу от вас, а не к востоку. А коль скоро он находится к западу от вас, то впервые поезд пройдет мимо вас, двигаясь на восток. Разумеется, если между Чикаго и Калифорнией курсирует не один, а много поездов, как это и происходит в действительности, то ситуация не изменится, и первый поезд, который проследует мимо нашего городка в любой момент времени, вероятнее всего будет двигаться на восток.
— Весьма вам признателен, доктор, — произнес мистер Джонсон, встав с кресла и взяв шляпу. — Вы излечили меня без всяких лекарств.
Встречные поезда
Через несколько дней после того, как мистер Джонсон нанес визит врачу, тот позвонил ему по телефону.
— Не могли бы вы заглянуть сегодня ко мне в приемную? — спросил врач. — Мне очень хотелось бы обсудить с вами еще один вопрос относительно железной дороги.
— С удовольствием, — охотно согласился мистер Джонсон, у которого после выхода на пенсию свободного времени стало хоть отбавляй.
— Я хочу предложить вашему вниманию одну задачку, о которой узнал от моего пациента, — сообщил доктор, когда мистер Джонсон устроился в кресле и вопросительно посмотрел на хозяина кабинета. — В разговоре с ним я рассказал о тех треволнениях, которые вам пришлось пережить из-за поездов, идущих на восток и на запад. В ответ пациент сообщил мне, что когда он едет в своей автомашине на работу, ему приходится пересекать железную дорогу — одноколейку, по которой в основном курсируют товарные поезда. Каждый такой поезд насчитывает много вагонов и тащится через переезд необычайно медленно. Моему пациенту приходится подолгу простаивать перед закрытым шлагбаумом, глядя на мерцающие сигнальные огни и еле движущуюся вереницу вагонов. Мой пациент мечтает о прокладке еще одной, второй, колеи. Это позволило бы, по его мнению, товарным поездам идущим на восток и на запад, лишь иногда встречаться на переезде, отчего общее время ожидания для водителей автомашин сократилось бы. А как по-вашему, сократилось бы время ожидания для автотранспорта от прокладки второй колеи?
— Разумеется, сократилось бы, — подтвердил старый машинист. — Если общее число поездов останется неизменным, то из-за случайных перекрытий встречных поездов у переезда средняя продолжительность простоя автотранспорта у переезда должна сократиться. Ведь это так ясно! Если два поезда минуют переезд одновременно, то время, которое потратил бы автомобилист, пропуская их, сократилось бы вдвое — до времени, которое ему пришлось бы ждать у шлагбаума, пока пройдет один поезд.
В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.