Занимательная математика - [16]

Шрифт
Интервал



— Семьдесят миль в час.

— Значит, он успел пролететь семьдесят миль. Правильно?

— Абсолютно правильно! — воскликнул врач. — Но то, что вы так легко решили эту задачу, свидетельствует о том что вы не математик! Настоящий математик стал бы искать решения в виде бесконечного ряда, суммируя времена, за которые шмель покрывает отрезки своего пути, совершая полеты туда и обратно между поездами. При таком подходе решение задачи становится весьма трудным, так как члены суммируемого ряда имеют достаточно сложный вид. Мне рассказывали, что Джон фон Нейман[8]. один из величайших математиков XX века, задумавшись на несколько секунд, дал правильный ответ — 70 миль.

— О! — воскликнул человек, задавший ему эту задачу. — Вы все-таки нашли простое решение, а я думал, что вы станете суммировать в уме бесконечный ряд.

— А я и просуммировал ряд, — спокойно ответил Джон фон Нейман, который был известен своей способностью производить в уме сложнейшие вычисления со скоростью, уступавшей только электронным компьютерам, в развитие которых он внес существенный вклад.

Почтовые голуби

Однажды мистер Джонсон поведал своему приятелю с математическим складом ума об одной трудной задаче, с которой ему пришлось столкнуться, когда он служил машинистом на железной дороге. Войскам связи настоятельно потребовалось провести испытание почтовых голубей, и представители командования этого рода войск обратились к мистеру Джонсону с просьбой выпустить двух почтовых голубей в точках маршрута, отстоящих на расстоянии ровно 50 миль и разделенных по времени ровно на 1 час.

На одном из участков маршрута был прямолинейный отрезок длиной 100 миль. По расписанию поезд должен был преодолеть эти 100 миль ровно за 2 часа, т. е. двигаться в течение 2 часов со средней скоростью 50 миль/ч. Но на этом стомильном отрезке было немало станций. Продолжительность стоянок, естественно, определялась расписанием, в котором было указано время прибытия поезда на каждую станцию и время отправления. Машинист мог нагнать потерянное время, двигаясь с более высокой скоростью, и ему всегда удавалось уложиться на стомильном отрезке в требуемые два часа.

— Но именно потому, что я покрываю 100 миль за 2 часа, — сказал мистер Джонсон своему приятелю, — нет никаких оснований предполагать, что в течение этих 2 часов непременно найдется часовой промежуток времени, на протяжении которого я двигаюсь со средней скоростью 50 миль/ч.

— Не хотелось бы огорчать вас, но, к сожалению, вы заблуждаетесь, — засмеялся врач. — Нетрудно доказать, что независимо от того, как менялась скорость поезда в течение 2 часов, за которые вы преодолеваете отрезок в 100 миль, непременно найдется по крайней мере один одночасовой промежуток времени, за который вы проезжаете ровно 50 миль. Проще всего в этом можно убедиться следующим образом. Представим себе, что 2 часа разделены на 2 последовательных промежутка времени продолжительностью 1 час каждый.

Предположим также, что ни за первый, ни за второй час вы не проезжаете ровно 50 миль, так как в противном случае задача была бы решена. Мы можем также, не ограничивая общности, предположить, что средняя скорость за первый час меньше 50 миль/ч, а за второй час — больше 50 миль/ч. Как вы увидите из дальнейшего, мои рассуждения не зависят от того, в который из часовых промежутков, в первый или во второй, средняя скорость была больше.

Мысленно представим себе промежуток времени продолжительностью в 1 час, непрерывно движущийся вдоль шкалы времени, на которой отложены один за другим первый и второй часы движения поезда. В начальном положении наш промежуток времени полностью совпадает с первым часом, в конечном положении — со вторым часом. Рассмотрим среднюю скорость поезда за часовой промежуток, скользящий вдоль шкалы времени. Так как в начальном положении наш часовой промежуток полностью перекрывается с первым часом, то средняя скорость за этот промежуток в самом начале меньше, чем 50 миль/ч. Непрерывно перемещая его направо, мы в конце концов совместим его со вторым часом, и тогда средняя скорость за скользящий часовой промежуток станет больше, чем 50 миль/ч.

Таким образом, непрерывно сдвигая часовой промежуток слева направо, мы непрерывным же образом изменяем среднюю скорость от значения, меньшего 50 миль/ч, до значения, большего 50 миль/ч. Следовательно, в некотором промежуточном положении часового промежутка средняя скорость за этот час должна быть в точности равна 50 милям/ч. Тем самым мое утверждение доказано.

Машинист вздохнул и заметил:

— Думаю, что вы правы, хотя войскам связи от этого не легче, так как я мог заранее знать, когда именно поезд начнет проходить тот самый участок, на котором он развивает среднюю скорость в 50 миль/ч, и поэтому не мог установить, когда мне следовало бы выпустить почтовых голубей. Но пока я размышляю над этим, мне хотелось бы предложить вам одну практическую задачку, которая может вас заинтересовать.

— Предлагайте, — охотно согласился доктор, — хотя я не очень силен в практических задачах.

Летнее время

— Как вы знаете, — начал мистер Джонсон, — я долгие годы водил поезда на одной и той же дистанции. Каждый вечер я прибывал в свой родной город точно по расписанию в одно и то же время и передавал поезд другому машинисту, которому предстояло вести его дальше.


Еще от автора Георгий Антонович Гамов
Приключения Мистера Томпкинса

В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.


Сердце по другую сторону

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.