Занимательная математика - [10]
Таким образом, перед каждым из нас возникает проблема: как лучше всего построить схему замены своих монет фальшивыми, если известно, что партнер вырабатывает для себя аналогичную схему.
— Что и говорить, звучит заманчиво, — вынужден был признать Сэм. — Так как в среднем я мог бы каждый раз выиграть среднее между девятью центами и одним центом, а ты — среднее между пятью и пятью центами, т. е. столько же, сколько и я, мы имеем равные шансы на выигрыш, и я считаю игру честной. Я готов сыграть с тобой и уверен, что сумею заменить свои монеты фальшивыми так, чтобы перехитрить тебя и научить хотя бы немного уважать старших.
Сэм-младший покачал головой.
— Не сердись, но я не возьму твоих денег. Дело в том, что игра, которую я тебе предлагаю, мошенническая: я могу выбрать такую стратегию замены монет фальшивыми, что при достаточно длинной серии бросаний ты можешь лишь надеяться свести проигрыш до минимума. Но ты непременно проиграешь, а я выиграю. Более того, я могу математически вычислить, какую долю бросаний у меня составит выпадение орла независимо от того, выпадает у тебя орел или решка. И из вычислений я могу узнать, сколько смогу выиграть при достаточно длинной серии бросаний.
Я покажу тебе, как производятся такие вычисления, хотя ты можешь поверить мне на слово. Просто мне кажется, что тебе будет интересно. Вот как это делается.
Напомню, что я хочу вычислить долю бросаний, в которых у меня должен был бы выпасть орел. Обозначим ее через >х, а размеры моего платежа через >Р.
Рассмотрим сначала, что происходит, когда у тебя выпадают орлы. Всякий раз, когда моя монета падает вверх орлом и у тебя выпал орел, я теряю 9 центов. Так как доля орлов составляет >х от общего числа бросаний, это означает, что в моей платежной функции есть член — >9х. Аналогичным образом, всякий раз, когда у меня выпадают решки, а у тебя орлы, я выигрываю 5 центов. Так как решки составляют >(1 — х) часть от всех бросаний, в моей платежной функции должен быть член >5(1 — х).
Таким образом, если я запишу мою полную платежную функцию для тех случаев, когда у тебя выпадают орлы, то она окажется
>Р>орлы = —9х + 5(1 — х),
или просто
>Р>орлы = -14х + 5.
Вот ее график:
Рассмотрим теперь, что происходит, когда у тебя выпадают решки. Действуя так же, как прежде, я получаю платежную функцию
>Р>решки = +5х — 1(1 — х),
>Р>решки = 6х — 1
Накладывая оба графика один на другой, мы находим, что они пересекаются при >х = 0,3 и >Р = 0,8
Это означает, что если я заменю 3/10 моих монет на фальшивые и случайным образом распределю фальшивые монеты среди моих монет, то в достаточно длинной серии бросаний я буду в среднем выигрывать 0,6 цента всякий раз, когда твоя и моя монеты выпадут обе либо вверх орлами, либо вверх решками.
Дни рождения
— Придумано хитро, хотя, должен признаться, я никак не возьму в толк, как же все получается, — признался Сэм-старший. — Сегодня вечером я собираюсь заглянуть в клуб. Кстати, нет ли у тебя подходящей математической задачки с неожиданным решением? Мне бы хотелось немного позабавиться и позабавить членов клуба.
— Как не быть! — улыбнулся Сэм-младший. — Но сначала скажи мне, пожалуйста, сколько членов клуба соберется сегодня вечером.
— Человек эдак тридцать, — прикинул Сэм-старший.
— Великолепно! Дело в том, что я хочу рассказать тебе об одной задаче о днях рождения, а для нее людей должно быть достаточно много. Представь себе, что тебе известны дни рождения всех членов клуба, которые соберутся сегодня, какова по-твоему вероятность совпадения дней рождения двух членов клуба? Под днем рождения я имею в виду не год, а только месяц и день.
— Мне кажется, что вероятность совпадения дней рождения у двух из тридцати случайным образом собравшихся людей должна быть что- нибудь около 0,05, но я готов держать пари из расчета 5 к 1.
— Охотно принимаю пари, — согласился Сэм-младший, — а заодно предлагаю тебе заключить пари с кем-нибудь из членов клуба. Даже если кто-нибудь из них предложит тебе пари из расчета 1 к 1, то рекомендую тебе принять такое пари.
— А вот этого я решительно не понимаю! — воскликнул Сэм- старший.
— Между тем перед тобой один из примеров того, что мы называем «мультипликативной природой независимых вероятностей». Ты опрашиваешь членов клуба об их днях рождения до тех пор, пока чей- нибудь день рождения не повторится, и в худшем случае тебе придется опросить всех тридцать членов клуба. Так как опрос продолжается только в том случае, если день рождения очередного члена клуба не совпадает с днем рождения ни одного из ранее опрошенных членов клуба, вероятности, которые требуется перемножить, — это вероятности несовпадения дня рождения каждого из вновь опрошенных. А вероятность совпадения дней рождения, разумеется, равна единице минус полученная вероятность несовпадения дней рождения.
Иначе говоря, день рождения второго из опрошенных тобой членов клуба с вероятностью 364/365 не совпадает с днем рождения первого из опрошенных. Что же касается третьего из опрошенных, то его день рождения может совпадать с днями рождения любого из первых двух опрошенных, поэтому вероятность того, что его день рождения не совпадает с их днями рождения, составляет 363/365.
В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости», — несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе и т. п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?», — и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ.